Contest Hunter CH6201 走廊泼水节 最小生成树 Kruskal

$ \rightarrow $ 戳我进CH原题

走廊泼水节 0x60「图论」例题

总时限10 s $ \quad $ 总内存256 MiB
 

描述

【简化版题意】给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树。
求增加的边的权值总和最小是多少。
 
我们一共有 $ N $ 个OIER打算参加这个泼水节,同时很凑巧的是正好有 $ N $ 个水龙头(至于为什么,我不解释)。
$ N $ 个水龙头之间正好有 $ N-1 $ 条小道,并且每个水龙头都可以经过小道到达其他水龙头(这是一棵树,你应该懂的..)。
但是OIER门为了迎接中中的挑战,决定修建一些个道路(至于怎么修,秘密~),
使得每个水龙头到每个水龙头之间都有一条直接的道路连接(也就是构成一个完全图呗~)。
但是OIER门很懒得,并且记性也不好,他们只会去走那 $ N-1 $ 条小道,
并且希望所有水龙头之间修建的道路,都要大于两个水龙头之前连接的所有小道(小道当然要是最短的了)。
所以神COW们,帮那些OIER们计算一下吧,修建的那些道路总长度最短是多少,毕竟修建道路是要破费的~~
 

输入格式

本题为多组数据~
第一行 $ t $ ,表示有t组测试数据
对于每组数据
第一行 $ N $ ,表示水龙头的个数(当然也是OIER的个数);
$ 2 $ 到 $ N $ 行,每行三个整数 $ X,Y,Z $ ;表示水龙头 $ X $ 和水龙头 $ Y $ 有一条长度为 $ Z $ 的小道
 

输出格式

对于每组数据,输出一个整数,表示修建的所有道路总长度的最短值。
 

样例输入

 2
 3
 1 2 2
 1 3 3
 4
 1 2 3
 2 3 4
 3 4 5 

样例输出

 4
 17

 

数据范围与约定

每个测试点最多 $ 10 $ 组测试数据
$ 50 $ % $ n \le 1500 $ ;
$ 100 $ % $ n \le 6000 $ ;
$ 100 $ % $ z \le 100 $ ;
 

样例解释

第一组数据,在 $ 2 $ 和 $ 3 $ 之间修建一条长度为 $ 4 $ 的道路,
使这棵树变成一个完全图,且原来的树依然是这个图的唯一最小生成树.
 

题解

  • 对给定树上的 $ N-1 $ 条边模拟一遍 $ Kruskal $
  • 通过边 $ (x,y) $ 合并两个并查集
  • $ x $ 集合中的每个点到 $ y $ 集合中的每个点
  • 添加一条长度为 $ w(x,y)+1 $ 的边

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define maxn 6010
struct edge{ int u,v,w; }e[maxn];
int t,n,f[6010],s[6010];
long long ans;
bool cmp(edge x,edge y){ return x.w<y.w; }
int find(int x){
    if(f[x]!=x) f[x]=find(f[x]);
    return f[x];
}
int main(){
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        for(int i=1;i<=n;++i){ f[i]=i; s[i]=1; }
        for(int i=1;i<n;++i) scanf("%d %d %d",&e[i].u,&e[i].v,&e[i].w);
        sort(e+1,e+n,cmp);
        ans=0;
        for(int fu,fv,i=1;i<n;++i){
            fu=find(e[i].u); fv=find(e[i].v);
            if(fu==fv) continue;
            ans+=1ll*(e[i].w+1)*(s[fu]*s[fv]-1);
            f[fu]=fv;
            s[fv]+=s[fu];
        }
        printf("%lld\n",ans);
    }
    return 0;
}
/*
用时
32 ms
占用内存
384 KiB
*/ 

原文地址:https://www.cnblogs.com/PotremZ/p/9610154.html

时间: 2025-01-16 22:52:58

Contest Hunter CH6201 走廊泼水节 最小生成树 Kruskal的相关文章

CH6201 走廊泼水节【最小生成树】

6201 走廊泼水节 0x60「图论」例题 描述 [简化版题意]给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 我们一共有N个OIER打算参加这个泼水节,同时很凑巧的是正好有N个水龙头(至于为什么,我不解释).N个水龙头之间正好有N-1条小道,并且每个水龙头都可以经过小道到达其他水龙头(这是一棵树,你应该懂的..).但是OIER门为了迎接中中的挑战,决定修建一些个道路(至于怎么修,秘密~),使得每个水龙头到每个

CH6201走廊泼水节

题目链接: CH6201 [简化版题意]给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 输入格式 本题为多组数据~ 第一行t,表示有t组测试数据 对于每组数据 第一行N,表示水龙头的个数(当然也是OIER的个数): 2到N行,每行三个整数X,Y,Z:表示水龙头X和水龙头Y有一条长度为Z的小道 输出格式 对于每组数据,输出一个整数,表示修建的所有道路总长度的最短值. 样例输入 2 3 1 2 2 1 3 3 4

[Tvvj1391]走廊泼水节(最小生成树)

[Tvvj1391]走廊泼水节 Description 给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 完全图:完全图是一个简单的无向图,其中每对不同的顶点之间都恰连有一条边相连(来自百度百科) 输入格式 本题为多组数据 第一行t,表示有t组测试数据 对于每组数据 第一行N,表示水龙头的个数(当然也是OIER的个数): 2到N行,每行三个整数X,Y,Z:表示水龙头X和水龙头Y有一条长度为Z的小道 输出格式 对于

HDU2988 Dark roads 【最小生成树Kruskal】

Dark roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 583    Accepted Submission(s): 253 Problem Description Economic times these days are tough, even in Byteland. To reduce the operating

AcWing 走廊泼水节

AcWing 走廊泼水节 Description 给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树. 求增加的边的权值总和最小是多少. Input 第一行包含整数t,表示共有t组测试数据. 对于每组测试数据,第一行包含整数N. 接下来N-1行,每行三个整数X,Y,Z,表示X节点与Y节点之间存在一条边,长度为Z. Output 每组数据输出一个整数,表示权值总和最小值. 每个结果占一行. Sample Input 2 3 1 2 2 1 3 3 4

SOJ4339 Driving Range 最小生成树 kruskal算法

典型的最小生成树 然后求最大的一条边 附上链接 http://cstest.scu.edu.cn/soj/problem.action?id=4339 需要注意的是有可能有 "IMPOSSIBLE" 的情况 这里用一个flag标记 记录所并的节点 只有flag = n时才能成功 负责就 "IMPOSSIBLE" 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring&g

ZOJ 3204 Connect them (C) 最小生成树kruskal

Connect them Time Limit: 1 Second      Memory Limit: 32768 KB You have n computers numbered from 1 to n and you want to connect them to make a small local area network (LAN). All connections are two-way (that is connecting computers i and j is the sa

最小生成树 kruskal算法简介

生成树--在一个图中的一个联通子图  使得所有的节点都被(访问) 最小生成树 (MST) 即联通子图的总代价(路程)最小 已知的一个图 有n个点 m条边 kruskal的算法如下 先对边从小到大排序 从最小的边起,不停的合并这条边的两个节点到一个集合,如果这条边的两个节点已经在一个集合里,则无视,否则形成回路(显然错误)直到所有的节点并到一个集合里 这里需要用到并查集来合并节点 1 int cmp(const int i,const int j) { 2 return w[i] < w[j];

最小生成树 Kruskal算法

Kruskal算法 1.概览 Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表.用来解决同样问题的还有Prim算法和Boruvka算法等.三种算法都是贪婪算法的应用.和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效. 2.算法简单描述 1).记Graph中有v个顶点,e个边 2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边 3).将原图Graph中所有e个边按权值从小到大排序 4)