神经网络学习之----神经网络发展史

启蒙时期( 1890-1969)

  1890年,心理学家William James出版了第一部详细论述人脑结构及功能的专著《心理学原理》,他认为一个神经细胞受到刺激激活后可以把刺激传播到另一个神经细胞,并且神经细胞激活是细胞所有输入叠加的结果。

  1943年,神经病学家和神经元解剖学家McCulloch和数学家Pitts在生物物理学期刊发表文章提出神经元的数学描述和结构。并且证明了只要有足够的简单神经元,在这些神经元互相连接并同步运行的情况下,可以模拟任何计算函数( M-P模型)。他们所做的开创性的工作被认为是人工神经网络(ANN)的起点。

  1949年,生理学家Hebb出版了《行为组织学》,描述了神经元权值的Hebb调整规则。他指出在神经网络中,信息存储在连接权值中。并提出假设神经元A到神经元B的连接权与从B到A的连接权是相同的。

  1958年,计算机学家Rosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”。

  1969年,人工智能的创始人之一的Minsky和Papert出版了一本名为《感知器》的书,书中指出简单神经网络只能运用于线性问题的求解,能够求解非线性问题的网络应具有隐层,而从理论上还不能证明将感知器模型扩展到多层网络是有意义的。

低潮时期( 1969-1982)

  Grossberg夫妇提出了自适应共振机理论和三个ART系统。

  Konhonen教授提出了自组织映射( SOM)理论。

  福岛邦彦的新认知机。

复兴时期( 1982-1986)

  1982年,美国加州理工学院的优秀物理学家Hopfield提出了Hopfield神经网络。Hopfield神经网络引用了物理力学的分析方法,把网络作为一种动态系统并研究这种网络动态系统的稳定性。

  1985年, Hinton和Sejnowski借助统计物理学的概念和方法提出了一种随机神经网络模型——玻尔兹曼机。一年后他们又改进了模型,提出了受限玻尔兹曼机。

  1986年, Rumelhart, Hinton, Williams发展了BP算法。(多层感知器的误差反向传播算法)

新时期( 1986年至今)

  1987年6月,首届国际神经网络学术会议在美国加州圣地亚哥召开,到会代表有1600余人。之后国际神经网络学会和国际电气工程师与电子工程师学会( IEEE)联合召开每年一次的国际学术会议。

  

原文地址:https://www.cnblogs.com/mengqimoli/p/9363316.html

时间: 2024-11-08 14:25:31

神经网络学习之----神经网络发展史的相关文章

神经网络学习之----神经网络概述

人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型.这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的. 兴起的事件:AlphaGo大战李世石 (AlphaGo胜) 神经网络基础:单层感知器,线性神经网络, BP神经网络, Hopfield神经网络等神经网络进阶:玻尔兹曼机,受

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是根据现有深度学习教程<UFLDL教程>中的算法,在SparkMLlib中的实现.具体Spark MLlib Deep Learning(深度学习)目录结构: 第一章Neural Net(NN) 1.源码 2.源码解析 3.实例 第二章D

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度,基础方面的非常多,随便看看就可以,只是很多没有把细节说得清楚和明白: 能把细节说清

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 3实例 3.1 测试数据 按照上例数据,或者新建图片识别数据. 3.2 CNN实例 //2 测试数据 Logger.getRootLogger.setLevel(Level.WARN) valdata_path="/use

深度学习之神经网络与支持向量机

深度学习之神经网络与支持向量机 引言:神经网络(Neural Network)与支持向量机(Support Vector Machines,SVM)是统计学习的代表方法.可以认为神经网络与支持向量机都源自于感知机(Perceptron).感知机是1958年由Rosenblatt发明的线性分类模型.感知机对线性分类有效,但现实中的分类问题通常是非线性的. 神经网络与支持向量机(包含核方法)都是非线性分类模型.1986年,Rummelhart与McClelland发明了神经网络的学习算法Back P

CNN卷积神经网络学习笔记2:网络结构

在上篇笔记<CNN卷积神经网络学习笔记1:背景介绍>中已经介绍过CNN的结构,这篇笔记中,通过一个简单的CNN的例子,梳理一下CNN的网络结构的细节. 以下是一个6层的CNN网络,这个简单的CNN网络是DeepLearning Toolbox里面CNN的一个例子,后面要通过DeepLearning Toolbox中CNN的代码来进一步理解CNN的整个过程.我们输入的是1张大小为28*28的图片. 需要注意的有: 1,这里输入的是一张图片,如果我们输入了50张图片,那么下图中的每一个方框(代表一

神经网络学习(一)

这个系列的文章主要记录学习<神经网络设计>这本书的收获与总结. 第一部分主要介绍三种网络: 感知机 Hamming Hopfield 感知机 采用对称硬极限传输函数hardlims的单层感知机 两输入感知机,w11 = -1, w22 = 1如下 a = hardlims(n) = hardlims([-1 1]p + b) Hamming Hamming网络的目标时判定哪个标准向量最接近输入向量. 判定结果由递归层的输出表示. R为样本空间维数 S为神经元个数 前馈层 前馈层用于实现每个标准

深度学习——人工神经网络再掀研究热潮

深度学习——人工神经网络再掀研究热潮 胡晓林 人工神经网络起源于上世纪40年代,到今天已经70年历史了.就像人的一生,经历了起起落落,有过辉煌,有过黯淡,有过嘈杂,有过冷清.总体说来,过去的20年中人工神经网络的研究不温不火,直到最近三五年,随着深度学习概念的提出,人工神经网络才又重新焕发生机,甚至再度掀起研究热潮.本文简述一下人工神经网络的“前世今生”,并简单展望一下它的未来. 第一个神经元模型是1943年McCulloch和Pitts提出的,称为threshold logic,它可以实现一些

Duanxx的神经网络学习: 自己动手写神经网络(二) 前馈网络的实现

本文是继续Duanxx的神经网络学习: 自己动手写神经网络(一) 搭建一个简单的网络框架 写的第二篇文章,将神经网络的前馈网络实现并测试. 本文的代码下载地址 1 为神经元Neuron添加权Weight 在上一篇文章中,我已经搭起了一个神经网络的框架. 但是那只是一个框架而已,什么都没有是实现,而这个框架的最基本的东西就是神经元Nenron,这里就考虑将Neuron实现一下. 对于一个神经元而言,它的输入是上一层神经元的输出,可以不用太关心,它也有自己的输出outputvalue,同时,它还要控