机器学习--Adaboost算法

  最近在系统研究集成学习,到Adaboost算法这块,一直不能理解,直到看到一篇博文,才有种豁然开朗的感觉,真的讲得特别好,原文地址是(http://blog.csdn.net/guyuealian/article/details/70995333),在此摘录,方便查找与复习。

一、AdaBoost简介

Boosting, 也称为增强学习或提升法,是一种重要的集成学习技术, 能够将预测精度仅比随机猜度略高的弱学习器增强为预测精度高的强学习器,这在直接构造强学习器非常困难的情况下,为学习算法的设计提供了一种有效的新思路和新方法。其中最为成功应用的是,Yoav Freund和Robert Schapire在1995年提出的AdaBoost算法。
      AdaBoost是英文"Adaptive Boosting"(自适应增强)的缩写,它的自适应在于:前一个基本分类器被错误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数才确定最终的强分类器。
Adaboost算法可以简述为三个步骤:
 (1)首先,是初始化训练数据的权值分布D1。假设有N个训练样本数据,则每一个训练样本最开始时,都被赋予相同的权值:w1=1/N。
 (2)然后,训练弱分类器hi。具体训练过程中是:如果某个训练样本点,被弱分类器hi准确地分类,那么在构造下一个训练集中,它对应的权值要减小;相反,如果某个训练样本点被错误分类,那么它的权值就应该增大。权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
 (3)最后,将各个训练得到的弱分类器组合成一个强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。
    换而言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。

二、AdaBoost算法过程

给定训练数据集:,其中用于表示训练样本的类别标签,i=1,...,N。Adaboost的目的就是从训练数据中学习一系列弱分类器或基本分类器,然后将这些弱分类器组合成一个强分类器。

相关符号定义:

  

  Adaboost的算法流程如下:

  相关说明:

  综合上面的推导,可得样本分错与分对时,其权值更新的公式为:

  

三、AdaBoost实例讲解

  例:给定如图所示的训练样本,弱分类器采用平行于坐标轴的直线,用Adaboost算法的实现强分类过程。

  

  

  数据分析

 将这10个样本作为训练数据,根据 X 和Y 的对应关系,可把这10个数据分为两类,图中用“+”表示类别1,用“O”表示类别-1。本例使用水平或者垂直的直线作为分类器,图中已经给出了三个弱分类器,即:

      

  初始化:

首先需要初始化训练样本数据的权值分布,每一个训练样本最开始时都被赋予相同的权值:wi=1/N,这样训练样本集的初始权值分布D1(i):

令每个权值w1i = 1/N = 0.1,其中,N = 10,i = 1,2, ..., 10,然后分别对于t= 1,2,3, ...等值进行迭代(t表示迭代次数,表示第t轮),下表已经给出训练样本的权值分布情况:

  第1次迭代t=1:

初试的权值分布D1为1/N(10个数据,每个数据的权值皆初始化为0.1),

        D1=[0.1,  0.1, 0.1, 0.1, 0.1, 0.1,0.1, 0.1, 0.1, 0.1]

在权值分布D1的情况下,取已知的三个弱分类器h1h2h3中误差率最小的分类器作为第1个基本分类器H1(x)(三个弱分类器的误差率都是0.3,那就取第1个吧)

        

在分类器H1(x)=h1情况下,样本点“5 7 8”被错分,因此基本分类器H1(x)的误差率为:

  

  可见,被误分类样本的权值之和影响误差率e,误差率e影响基本分类器在最终分类器中所占的权重α

  

  然后,更新训练样本数据的权值分布,用于下一轮迭代,对于正确分类的训练样本“1 2 3 4 6 9 10”(共7个)的权值更新为:

  

  这样,第1轮迭代后,最后得到各个样本数据新的权值分布:

      D2=[1/14,1/14,1/14,1/14,1/6,1/14,1/6,1/6,1/14,1/14]

由于样本数据“5 7 8”被H1(x)分错了,所以它们的权值由之前的0.1增大到1/6;反之,其它数据皆被分正确,所以它们的权值皆由之前的0.1减小到1/14,下表给出了权值分布的变换情况:

  

  可得分类函数:f1(x)= α1H1(x) = 0.4236H1(x)。此时,组合一个基本分类器sign(f1(x))作为强分类器在训练数据集上有3个误分类点(即5 7 8),此时强分类器的训练错误为:0.3

  第二次迭代t=2:

  

  

  这样,第2轮迭代后,最后得到各个样本数据新的权值分布:

      D3=[1/22,1/22,1/6,1/6,7/66,1/6,7/66,7/66,1/22,1/22]

  下表给出了权值分布的变换情况:

  

  

  可得分类函数:f2(x)=0.4236H1(x) + 0.6496H2(x)。此时,组合两个基本分类器sign(f2(x))作为强分类器在训练数据集上有3个误分类点(即3 4 6),此时强分类器的训练错误为:0.3

  第三次迭代t=3:

  

    

  

   这样,第3轮迭代后,得到各个样本数据新的权值分布为:

    D4=[1/6,1/6,11/114,11/114,7/114,11/114,7/114,7/114,1/6,1/38]

  下表给出了权值分布的变换情况:

  

  可得分类函数:f3(x)=0.4236H1(x) + 0.6496H2(x)+0.9229H3(x)。此时,组合三个基本分类器sign(f3(x))作为强分类器,在训练数据集上有0个误分类点。至此,整个训练过程结束。

整合所有分类器,可得最终的强分类器为:

  

  这个强分类器Hfinal对训练样本的错误率为0!

  Adaboost算法的某些特性是非常好的,这里主要介绍Adaboost的两个特性。(1)是训练的错误率上界,随着迭代次数的增加,会逐渐下降;(2)是Adaboost算法即使训练次数很多,也不会出现过拟合的问题。关于这两方面的研究和分析,我建议各大网友,还是看看大神的博客:http://blog.csdn.net/v_july_v/article/details/40718799

四、AdaBoost的优点和缺点

  优点

(1)Adaboost提供一种框架,在框架内可以使用各种方法构建子分类器。可以使用简单的弱分类器,不用对特征进行筛选,也不存在过拟合的现象。

(2)Adaboost算法不需要弱分类器的先验知识,最后得到的强分类器的分类精度依赖于所有弱分类器。无论是应用于人造数据还是真实数据,Adaboost都能显著的提高学习精度。

(3)Adaboost算法不需要预先知道弱分类器的错误率上限,且最后得到的强分类器的分类精度依赖于所有弱分类器的分类精度,可以深挖分类器的能力。Adaboost可以根据弱分类器的反馈,自适应地调整假定的错误率,执行的效率高。

(4)Adaboost对同一个训练样本集训练不同的弱分类器,按照一定的方法把这些弱分类器集合起来,构造一个分类能力很强的强分类器,即“三个臭皮匠赛过一个诸葛亮”。

  缺点:

在Adaboost训练过程中,Adaboost会使得难于分类样本的权值呈指数增长,训练将会过于偏向这类困难的样本,导致Adaboost算法易受噪声干扰。此外,Adaboost依赖于弱分类器,而弱分类器的训练时间往往很长。

      

  

原文地址:https://www.cnblogs.com/zongfa/p/9313960.html

时间: 2024-10-14 02:38:06

机器学习--Adaboost算法的相关文章

【机器学习笔记之四】Adaboost 算法

本文结构: 什么是集成学习? 为什么集成的效果就会好于单个学习器? 如何生成个体学习器? 什么是 Boosting? Adaboost 算法? 什么是集成学习 集成学习就是将多个弱的学习器结合起来组成一个强的学习器. 这就涉及到,先产生一组‘个体学习器’,再用一个策略将它们结合起来. 个体学习器可以选择:决策树,神经网络.集成时可以所有个体学习器属于同一类算法:全是决策树,或全是神经网络:也可以来自不同的算法.结合策略:例如分类问题,可以用投票法,少数服从多数. 之所以用这种集成的思想,是因为单

机器学习——AdaBoost元算法

当做重要决定时,我们可能会考虑吸取多个专家而不只是一个人的意见.机器学习处理问题也是这样,这就是元算法(meta-algorithm)背后的思路. 元算法是对其他算法进行组合的一种方式,其中最流行的一种算法就是AdaBoost算法.某些人认为AdaBoost是最好的监督学习的方法,所以该方法是机器学习工具箱中最强有力的工具之一. 集成学习或者元算法的一般结构是:先产生一组"个体学习器",再用某种策略将他们结合起来.个体学习器通常是由一个现有的学习算法从训练数据产生. 根据个体学习器的生

《机器学习实战》AdaBoost算法的分析与实现

===================================================================== <机器学习实战>系列博客是博主阅读<机器学习实战>这本书的笔记也包含一些其他python实现的机器学习算法 github 源码同步:https://github.com/Thinkgamer/Machine-Learning-With-Python 算法实现均采用Python              如需转载请注明出处,谢谢 ========

机器学习经典算法详解及Python实现--元算法、AdaBoost

第一节,元算法略述 遇到罕见病例时,医院会组织专家团进行临床会诊共同分析病例以判定结果.如同专家团临床会诊一样,重大决定汇总多个人的意见往往胜过一个人的决定.机器学习中也吸取了'三个臭皮匠顶个诸葛亮'(实质上是由三个裨将顶个诸葛亮口误演化而来)的思想,这就是元算法的思想.元算法(meta-algorithm)也叫集成方法(ensemble method),通过将其他算法进行组合而形成更优的算法,组合方式包括:不同算法的集成,数据集不同部分采用不同算法分类后的集成或者同一算法在不同设置下的集成.

【机器学习详解】AdaBoost算法原理

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51714346 1.概念 AdaBoost是一种级联算法模型,即把几个弱分类器级联到一起去处理同一个分类问题.也就是"三个臭皮匠顶一个诸葛亮"的道理.例如一个专家作出的判定往往没有几个专家一起作出的判定更准确.一种情况:如果每个专家都仅有一票的权利,采用投票机制的方法属于uniform形式:另一种情况是分配给每个专家的票数不一致则属于linear形式.A

机器学习之Adaboost算法原理

转自:http://www.cnblogs.com/pinard/p/6133937.html 在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boosting系列算法.在boosting系列算法中, Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归.本文就对Adaboost算法做一个总结. 1. 回顾boosting算法的基

【人脸检测——基于机器学习3】AdaBoost算法

简介 主要工作 AdaBoost算法的人脸检测算法包含的主要工作:(1)通过积分图快速求得Haar特征:(2)利用AdaBoost算法从大量的特征中选择出判别能力较强的少数特征用于人脸检测分类:(3)提出一个级联结构模型,将若干个弱分类器集成一个强分类器,其能够快速排除非人脸区域,提高算法的检测速度. 2. AdaBoost算法具体描述 AdaBoost算法的原理是通过逐级增强的方法将弱分类器组合成为分类效果较好的强分类器,具体来说: (1) 给定一个弱学习算法和一个训练集,其中是输入的训练样本

吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d

吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d