java接口限流算法

0. 前言

常见的限流算法有:令牌桶、漏桶。计数器也可以进行粗暴限流实现。

1. 算法介绍

1.1 令牌桶算法

令牌桶算法是一个存放固定容量令牌的桶,按照固定速率往桶里添加令牌。令牌桶算法的描述如下:

  • 假设限制2r/s,则按照500毫秒的固定速率往桶中添加令牌;
  • 桶中最多存放b个令牌,当桶满时,新添加的令牌被丢弃或拒绝;
  • 当一个n个字节大小的数据包到达,将从桶中删除n个令牌,接着数据包被发送到网络上;
  • 如果桶中的令牌不足n个,则不会删除令牌,且该数据包将被限流(要么丢弃,要么缓冲区等待)。

1.2 漏桶算法

漏桶作为计量工具(The Leaky Bucket Algorithm as a Meter)时,可以用于流量整形(Traffic Shaping)和流量控制(TrafficPolicing),漏桶算法的描述如下:

  • 一个固定容量的漏桶,按照常量固定速率流出水滴;
  • 如果桶是空的,则不需流出水滴;
  • 可以以任意速率流入水滴到漏桶;
  • 如果流入水滴超出了桶的容量,则流入的水滴溢出了(被丢弃),而漏桶容量是不变的。

1.3 总结

令牌桶和漏桶对比:

  • 令牌桶是按照固定速率往桶中添加令牌,请求是否被处理需要看桶中令牌是否足够,当令牌数减为零时则拒绝新的请求;
  • 漏桶则是按照常量固定速率流出请求,流入请求速率任意,当流入的请求数累积到漏桶容量时,则新流入的请求被拒绝;
  • 令牌桶限制的是平均流入速率(允许突发请求,只要有令牌就可以处理,支持一次拿3个令牌,4个令牌),并允许一定程度突发流量;
  • 漏桶限制的是常量流出速率(即流出速率是一个固定常量值,比如都是1的速率流出,而不能一次是1,下次又是2),从而平滑突发流入速率;
  • 令牌桶允许一定程度的突发,而漏桶主要目的是平滑流入速率;
  • 两个算法实现可以一样,但是方向是相反的,对于相同的参数得到的限流效果是一样的。

另外有时候我们还使用计数器来进行限流,主要用来限制总并发数,比如数据库连接池、线程池、秒杀的并发数;只要全局总请求数或者一定时间段的总请求数设定的阀值则进行限流,是简单粗暴的总数量限流,而不是平均速率限流。

2. 算法实现

《java接口限流小结》中的限流方式都不能很好地应对突发请求,即瞬间请求可能都被允许从而导致一些问题;因此在一些场景中需要对突发请求进行整形,整形为平均速率请求处理(比如5r/s,则每隔200毫秒处理一个请求,平滑了速率)。这个时候有两种算法满足我们的场景:令牌桶和漏桶算法。Guava框架提供了令牌桶算法实现,可直接拿来使用。

Guava RateLimiter提供了令牌桶算法实现:平滑突发限流(SmoothBursty)和平滑预热限流(SmoothWarmingUp)实现。

2.1 SmoothBursty

RateLimiter limiter = RateLimiter.create(5);
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());

将得到类似如下的输出:

0.0
0.198903
0.195463
0.19712
0.199252
0.196105

1、RateLimiter.create(5) 表示桶容量为5且每秒新增5个令牌,即每隔200毫秒新增一个令牌;

2、limiter.acquire()表示消费一个令牌,如果当前桶中有足够令牌则成功(返回值为0),如果桶中没有令牌则暂停一段时间,比如发令牌间隔是200毫秒,则等待200毫秒后再去消费令牌(如上测试用例返回的为0.198239,差不多等待了200毫秒桶中才有令牌可用),这种实现将突发请求速率平均为了固定请求速率。

再看一个突发示例:

RateLimiter limiter = RateLimiter.create(5);
System.out.println(limiter.acquire(5));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));

将得到类似如下的输出:

0.0
0.998729
0.19379

limiter.acquire(5)表示桶的容量为5且每秒新增5个令牌,令牌桶算法允许一定程度的突发,所以可以一次性消费5个令牌,但接下来的limiter.acquire(1)将等待差不多1秒桶中才能有令牌,且接下来的请求也整形为固定速率了。

RateLimiter limiter = RateLimiter.create(5);
System.out.println(limiter.acquire(10));
System.out.println(limiter.acquire(1));
System.out.println(limiter.acquire(1));

将得到类似如下的输出:

0.0
1.998922
0.19615

同上边的例子类似,第一秒突发了10个请求,令牌桶算法也允许了这种突发(允许消费未来的令牌),但接下来的limiter.acquire(1)将等待差不多2秒桶中才能有令牌,且接下来的请求也整形为固定速率了。

接下来再看一个突发的例子:

RateLimiter limiter = RateLimiter.create(2);
System.out.println(limiter.acquire());
Thread.sleep(2000L);
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());
System.out.println(limiter.acquire());

接下来再看一个突发的例子:

0.0
0.0
0.0
0.0
0.499738
0.496078

1、创建了一个桶容量为2且每秒新增2个令牌;

2、首先调用limiter.acquire()消费一个令牌,此时令牌桶可以满足(返回值为0);

3、然后线程暂停2秒,接下来的两个limiter.acquire()都能消费到令牌,第三个limiter.acquire()也同样消费到了令牌,到第四个时就需要等待500毫秒了。

此处可以看到我们设置的桶容量为2(即允许的突发量),这是因为SmoothBursty中有一个参数:最大突发秒数(maxBurstSeconds)默认值是1s,突发量/桶容量=速率*maxBurstSeconds,所以本示例桶容量/突发量为2,例子中前两个是消费了之前积攒的突发量,而第三个开始就是正常计算的了。令牌桶算法允许将一段时间内没有消费的令牌暂存到令牌桶中,留待未来使用,并允许未来请求的这种突发。

SmoothBursty通过平均速率和最后一次新增令牌的时间计算出下次新增令牌的时间的,另外需要一个桶暂存一段时间内没有使用的令牌(即可以突发的令牌数)。另外RateLimiter还提供了tryAcquire方法来进行无阻塞或可超时的令牌消费。

因为SmoothBursty允许一定程度的突发,会有人担心如果允许这种突发,假设突然间来了很大的流量,那么系统很可能扛不住这种突发。因此需要一种平滑速率的限流工具,从而系统冷启动后慢慢的趋于平均固定速率(即刚开始速率小一些,然后慢慢趋于我们设置的固定速率)。Guava也提供了SmoothWarmingUp来实现这种需求,其可以认为是漏桶算法,但是在某些特殊场景又不太一样。

2.2 SmoothWarmingUp

SmoothWarmingUp创建方式:RateLimiter.create(doublepermitsPerSecond, long warmupPeriod, TimeUnit unit)

permitsPerSecond表示每秒新增的令牌数,warmupPeriod表示在从冷启动速率过渡到平均速率的时间间隔。

示例如下:

RateLimiter limiter = RateLimiter.create(5, 1000, TimeUnit.MILLISECONDS);
for(int i = 1; i < 5;i++) {
    System.out.println(limiter.acquire());
}
Thread.sleep(1000L);
for(int i = 1; i < 5;i++) {
    System.out.println(limiter.acquire());
}

将得到类似如下的输出:

0.0
0.518916
0.356743
0.219183
0.0
0.519927
0.354751
0.214637

速率是梯形上升速率的,也就是说冷启动时会以一个比较大的速率慢慢到平均速率;然后趋于平均速率(梯形下降到平均速率)。可以通过调节warmupPeriod参数实现一开始就是平滑固定速率。

到此应用级限流的一些方法就介绍完了。假设将应用部署到多台机器,应用级限流方式只是单应用内的请求限流,不能进行全局限流。因此我们需要分布式限流和接入层限流来解决这个问题。

参考:

http://jinnianshilongnian.iteye.com/blog/2305117

原文地址:https://www.cnblogs.com/john8169/p/9339546.html

时间: 2025-01-14 09:19:20

java接口限流算法的相关文章

接口限流算法总结

背景 曾经在一个大神的博客里看到这样一句话:在开发高并发系统时,有三把利器用来保护系统:缓存.降级和限流.那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了.通过限流,我们可以很好地控制系统的qps,从而达到保护系统的目的.本篇文章将会介绍一下常用的限流算法以及他们各自的特点. 算法介绍 计数器法 计 数器法是限流算法里最简单也是最容易实现的一种算法.比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个.那么我们可以这么做:在一开 始的时候,我们可

常用的接口限流算法

在开发高并发系统时,有三把利器用来保护系统:缓存.降级和限流.那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了.通过限流,我们可以很好地控制系统的qps,从而达到保护系统的目的.本篇将会介绍一下常用的限流算法以及他们各自的特点. 算法介绍 计数器法 计数器法是限流算法里最简单也是最容易实现的一种算法.比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个.那么我们可以这么做:在一开始的时候,我们可以设置一个计数器counter,每当一个请求过来的时

限流(二)接口限流

如果某个接口可能出现突发情况,比如"秒杀"活动,那么很有可能因为突然爆发的访问量造成系统奔溃,我们需要最这样的接口进行限流. 在上一篇"限流算法"中,我们简单提到了两种限流方式: 1)(令牌桶.漏桶算法)限速率,例如:每 5r/1s = 1r/200ms 即一个请求以200毫秒的速率来执行: 2)(计数器方式)限制总数.或者单位时间内的总数,例如:设定总并发数的阀值,单位时间总并发数的阀值. 一.限制总并发数 我们可以采用java提供的atomicLong类来实现

限流算法之漏桶算法、令牌桶算法

昨天CodeReview的时候看到同时使用RateLimiter这个类用作QPS访问限制.学习一下这个类. RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类. 1.限流 每个API接口都是有访问上限的,当访问频率或者并发量超过其承受范围时候,我们就必须考虑限流来保证接口的可用性或者降级可用性.即接口也需要安装上保险丝,以防止非预期的请求对系统压力过大而引起的系统瘫痪. 通常的策略就是拒绝多余的访问,或者让多余的访问排队等待服务,或者引流. 如果要准确的控制Q

接口限流实践

一.问题描述 某天A君突然发现自己的接口请求量突然涨到之前的10倍,没多久该接口几乎不可使用,并引发连锁反应导致整个系统崩溃.如何应对这种情况呢?生活给了我们答案:比如老式电闸都安装了保险丝,一旦有人使用超大功率的设备,保险丝就会烧断以保护各个电器不被强电流给烧坏.同理我们的接口也需要安装上“保险丝”,以防止非预期的请求对系统压力过大而引起的系统瘫痪,当流量过大时,可以采取拒绝或者引流等机制. 二.常用的限流算法 常用的限流算法有两种:漏桶算法和令牌桶算法,这篇博文介绍得比较清晰(过载保护算法浅

Guava的RateLimiter实现接口限流

最近开发需求中有需要对后台接口进行限流处理,整理了一下基本使用方法. 首先添加guava依赖: <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>23.0</version> </dependency> 然后封装RateLimiter适用对多接口的限制: import com.goog

三种常见的限流算法

在开发高并发系统时,有三把利器用来保护系统:缓存.降级和限流.那么何为限流呢?顾名思义,限流就是限制流量,就像你宽带包了1个G的流量,用完了就没了.通过限流,我们可以很好地控制系统的qps,从而达到保护系统的目的.本篇文章将会介绍一下常用的限流算法以及他们各自的特点. 1.计数器算法计数器算法是限流算法里最简单也是最容易实现的一种算法.比如我们规定,对于A接口来说,我们1分钟的访问次数不能超过100个.那么我们可以这么做:在一开 始的时候,我们可以设置一个计数器counter,每当一个请求过来的

接口限流

一.什么是限流 使资源以限定的速率被使用.比如:地铁限流,高峰时段限制单位时间内的客流量:电路中的限流器,可以保证电路不超过额定的电流:网站限流,抢购,瞬间的高峰对于后台来说肯定是需要一个限流处理为可接受的速率进行处理. 二.为什么要限流 比如:地铁不限流量,挤爆了:电路不限流,灯爆了:网站不限流,撑爆了. 三.限流的几种方式 常用的限流算法有两种:漏桶算法和令牌桶算法. 漏桶算法:桶中水以限定的速度流出来.缺点:水满溢出.突发请求不能尽快处理,被调整为固定速率. 令牌桶算法:系统会以一个限定的

常用的限流算法

常用的限流算法大致有三种:令牌桶算法,漏桶算法,计数器算法 令牌桶算法 令牌桶算法是一个存放固定容量令牌的桶,按照固定速率往桶里添加令牌.令牌桶算法的描述如下: 1.假设限制2r/s,则按照500毫秒的固定速率往桶中添加令牌 2.桶中最多存放b个令牌,当桶满时,新添加的令牌被丢弃或拒绝 3.当一个n个字节大小的数据包到达,将从桶中删除n个令牌,接着数据包被发送到网络上 4.如果桶中的令牌不足n个,则不会删除令牌,且该数据包将被限流(要么丢弃,要么缓冲区等待) 漏桶算法 漏桶作为计量工具(The