Apache Flink 是什么?

架构

Apache Flink 是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。

接下来,我们来介绍一下 Flink 架构中的重要方面。

处理无界和有界数据

任何类型的数据都可以形成一种事件流。信用卡交易、传感器测量、机器日志、网站或移动应用程序上的用户交互记录,所有这些数据都形成一种流。

数据可以被作为 无界 或者 有界 流来处理。

  1. 无界流
    有定义流的开始,但没有定义流的结束。它们会无休止地产生数据。无界流的数据必须持续处理,即数据被摄取后需要立刻处理。我们不能等到所有数据都到达再处理,因为输入是无限的,在任何时候输入都不会完成。处理无界数据通常要求以特定顺序摄取事件,例如事件发生的顺序,以便能够推断结果的完整性。
  2. 有界流 有定义流的开始,也有定义流的结束。有界流可以在摄取所有数据后再进行计算。有界流所有数据可以被排序,所以并不需要有序摄取。有界流处理通常被称为批处理

Apache Flink 擅长处理无界和有界数据集 精确的时间控制和状态化使得 Flink 的运行时(runtime)能够运行任何处理无界流的应用。有界流则由一些专为固定大小数据集特殊设计的算法和数据结构进行内部处理,产生了出色的性能。

通过探索 Flink 之上构建的 用例 来加深理解。

部署应用到任意地方

Apache Flink 是一个分布式系统,它需要计算资源来执行应用程序。Flink 集成了所有常见的集群资源管理器,例如 Hadoop YARNApache MesosKubernetes,但同时也可以作为独立集群运行。

Flink 被设计为能够很好地工作在上述每个资源管理器中,这是通过资源管理器特定(resource-manager-specific)的部署模式实现的。Flink 可以采用与当前资源管理器相适应的方式进行交互。

部署 Flink 应用程序时,Flink
会根据应用程序配置的并行性自动标识所需的资源,并从资源管理器请求这些资源。在发生故障的情况下,Flink
通过请求新资源来替换发生故障的容器。提交或控制应用程序的所有通信都是通过 REST 调用进行的,这可以简化 Flink 与各种环境中的集成。

运行任意规模应用

Flink
旨在任意规模上运行有状态流式应用。因此,应用程序被并行化为可能数千个任务,这些任务分布在集群中并发执行。所以应用程序能够充分利用无尽的
CPU、内存、磁盘和网络 IO。而且 Flink
很容易维护非常大的应用程序状态。其异步和增量的检查点算法对处理延迟产生最小的影响,同时保证精确一次状态的一致性。

Flink 用户报告了其生产环境中一些令人印象深刻的扩展性数字

  • 处理每天处理数万亿的事件,
  • 应用维护几TB大小的状态, 和
  • 应用在数千个内核上运行

利用内存性能

有状态的 Flink
程序针对本地状态访问进行了优化。任务的状态始终保留在内存中,如果状态大小超过可用内存,则会保存在能高效访问的磁盘数据结构中。任务通过访问本地(通常在内存中)状态来进行所有的计算,从而产生非常低的处理延迟。Flink
通过定期和异步地对本地状态进行持久化存储来保证故障场景下精确一次的状态一致性。

应用

Apache Flink 是一个针对无界和有界数据流进行有状态计算的框架。Flink 自底向上在不同的抽象级别提供了多种 API,并且针对常见的使用场景开发了专用的扩展库。

在本章中,我们将介绍 Flink 所提供的这些简单易用、易于表达的 API 和库。

流处理应用的基本组件

可以由流处理框架构建和执行的应用程序类型是由框架对 状态时间 的支持程度来决定的。在下文中,我们将对上述这些流处理应用的基本组件逐一进行描述,并对 Flink 处理它们的方法进行细致剖析。

显而易见,(数据)流是流处理的基本要素。然而,流也拥有着多种特征。这些特征决定了流如何以及何时被处理。Flink 是一个能够处理任何类型数据流的强大处理框架。

  • 有界无界 的数据流:流可以是无界的;也可以是有界的,例如固定大小的数据集。Flink 在无界的数据流处理上拥有诸多功能强大的特性,同时也针对有界的数据流开发了专用的高效算子。
  • 实时历史记录 的数据流:所有的数据都是以流的方式产生,但用户通常会使用两种截然不同的方法处理数据。或是在数据生成时进行实时的处理;亦或是先将数据流持久化到存储系统中——例如文件系统或对象存储,然后再进行批处理。Flink 的应用能够同时支持处理实时以及历史记录数据流。

状态

只有在每一个单独的事件上进行转换操作的应用才不需要状态,换言之,每一个具有一定复杂度的流处理应用都是有状态的。任何运行基本业务逻辑的流处理应用都需要在一定时间内存储所接收的事件或中间结果,以供后续的某个时间点(例如收到下一个事件或者经过一段特定时间)进行访问并进行后续处理。

应用状态是 Flink 中的一等公民,Flink 提供了许多状态管理相关的特性支持,其中包括:

  • 多种状态基础类型:Flink 为多种不同的数据结构提供了相对应的状态基础类型,例如原子值(value),列表(list)以及映射(map)。开发者可以基于处理函数对状态的访问方式,选择最高效、最适合的状态基础类型。
  • 插件化的State Backend:State Backend 负责管理应用程序状态,并在需要的时候进行 checkpoint。Flink 支持多种 state backend,可以将状态存在内存或者 RocksDB。RocksDB 是一种高效的嵌入式、持久化键值存储引擎。Flink 也支持插件式的自定义 state backend 进行状态存储。
  • 精确一次语义:Flink 的 checkpoint 和故障恢复算法保证了故障发生后应用状态的一致性。因此,Flink 能够在应用程序发生故障时,对应用程序透明,不造成正确性的影响。
  • 超大数据量状态:Flink 能够利用其异步以及增量式的 checkpoint 算法,存储数 TB 级别的应用状态。
  • 可弹性伸缩的应用:Flink 能够通过在更多或更少的工作节点上对状态进行重新分布,支持有状态应用的分布式的横向伸缩。

时间

时间是流处理应用另一个重要的组成部分。因为事件总是在特定时间点发生,所以大多数的事件流都拥有事件本身所固有的时间语义。进一步而言,许多常见的流计算都基于时间语义,例如窗口聚合、会话计算、模式检测和基于时间的
join。流处理的一个重要方面是应用程序如何衡量时间,即区分事件时间(event-time)和处理时间(processing-time)。

Flink 提供了丰富的时间语义支持。

  • 事件时间模式:使用事件时间语义的流处理应用根据事件本身自带的时间戳进行结果的计算。因此,无论处理的是历史记录的事件还是实时的事件,事件时间模式的处理总能保证结果的准确性和一致性。
  • Watermark 支持:Flink 引入了 watermark 的概念,用以衡量事件时间进展。Watermark 也是一种平衡处理延时和完整性的灵活机制。
  • 迟到数据处理:当以带有 watermark 的事件时间模式处理数据流时,在计算完成之后仍会有相关数据到达。这样的事件被称为迟到事件。Flink 提供了多种处理迟到数据的选项,例如将这些数据重定向到旁路输出(side output)或者更新之前完成计算的结果。
  • 处理时间模式:除了事件时间模式,Flink 还支持处理时间语义。处理时间模式根据处理引擎的机器时钟触发计算,一般适用于有着严格的低延迟需求,并且能够容忍近似结果的流处理应用。

分层 API

Flink 根据抽象程度分层,提供了三种不同的 API。每一种 API 在简洁性和表达力上有着不同的侧重,并且针对不同的应用场景。

下文中,我们将简要描述每一种 API 及其应用,并提供相关的代码示例。

ProcessFunction

ProcessFunction
是 Flink 所提供的最具表达力的接口。ProcessFunction
可以处理一或两条输入数据流中的单个事件或者归入一个特定窗口内的多个事件。它提供了对于时间和状态的细粒度控制。开发者可以在其中任意地修改状态,也能够注册定时器用以在未来的某一时刻触发回调函数。因此,你可以利用
ProcessFunction 实现许多有状态的事件驱动应用所需要的基于单个事件的复杂业务逻辑。

下面的代码示例展示了如何在 KeyedStream 上利用 KeyedProcessFunction 对标记为 STARTEND 的事件进行处理。当收到 START 事件时,处理函数会记录其时间戳,并且注册一个时长4小时的计时器。如果在计时器结束之前收到 END 事件,处理函数会计算其与上一个 START 事件的时间间隔,清空状态并将计算结果返回。否则,计时器结束,并清空状态。

/**

 * 将相邻的 keyed START 和 END 事件相匹配并计算两者的时间间隔
 * 输入数据为 Tuple2<String, String> 类型,第一个字段为 key 值,
 * 第二个字段标记 START 和 END 事件。
    */
public static class StartEndDuration
    extends KeyedProcessFunction<String, Tuple2<String, String>, Tuple2<String, Long>> {

  private ValueState<Long> startTime;

  @Override
  public void open(Configuration conf) {
    // obtain state handle
    startTime = getRuntimeContext()
      .getState(new ValueStateDescriptor<Long>("startTime", Long.class));
  }

  /** Called for each processed event. */
  @Override
  public void processElement(
      Tuple2<String, String> in,
      Context ctx,
      Collector<Tuple2<String, Long>> out) throws Exception {

    switch (in.f1) {
      case "START":
        // set the start time if we receive a start event.
        startTime.update(ctx.timestamp());
        // register a timer in four hours from the start event.
        ctx.timerService()
          .registerEventTimeTimer(ctx.timestamp() + 4 * 60 * 60 * 1000);
        break;
      case "END":
        // emit the duration between start and end event
        Long sTime = startTime.value();
        if (sTime != null) {
          out.collect(Tuple2.of(in.f0, ctx.timestamp() - sTime));
          // clear the state
          startTime.clear();
        }
      default:
        // do nothing
    }
  }

  /** Called when a timer fires. */
  @Override
  public void onTimer(
      long timestamp,
      OnTimerContext ctx,
      Collector<Tuple2<String, Long>> out) {

    // Timeout interval exceeded. Cleaning up the state.
    startTime.clear();
  }
}

这个例子充分展现了 KeyedProcessFunction 强大的表达力,也因此是一个实现相当复杂的接口。

DataStream API

DataStream API 为许多通用的流处理操作提供了处理原语。这些操作包括窗口、逐条记录的转换操作,在处理事件时进行外部数据库查询等。DataStream API 支持 Java 和 Scala 语言,预先定义了例如map()reduce()aggregate() 等函数。你可以通过扩展实现预定义接口或使用 Java、Scala 的 lambda 表达式实现自定义的函数。

下面的代码示例展示了如何捕获会话时间范围内所有的点击流事件,并对每一次会话的点击量进行计数。

// 网站点击 Click 的数据流
DataStream<Click> clicks = ...

DataStream<Tuple2<String, Long>> result = clicks
  // 将网站点击映射为 (userId, 1) 以便计数
  .map(
    // 实现 MapFunction 接口定义函数
    new MapFunction<Click, Tuple2<String, Long>>() {
      @Override
      public Tuple2<String, Long> map(Click click) {
        return Tuple2.of(click.userId, 1L);
      }
    })
  // 以 userId (field 0) 作为 key
  .keyBy(0)
  // 定义 30 分钟超时的会话窗口
  .window(EventTimeSessionWindows.withGap(Time.minutes(30L)))
  // 对每个会话窗口的点击进行计数,使用 lambda 表达式定义 reduce 函数
  .reduce((a, b) -> Tuple2.of(a.f0, a.f1 + b.f1));

SQL & Table API

Flink 支持两种关系型的 API,Table API 和 SQL。这两个 API 都是批处理和流处理统一的 API,这意味着在无边界的实时数据流和有边界的历史记录数据流上,关系型 API 会以相同的语义执行查询,并产生相同的结果。Table API 和 SQL 借助了 Apache Calcite 来进行查询的解析,校验以及优化。它们可以与 DataStream 和 DataSet API 无缝集成,并支持用户自定义的标量函数,聚合函数以及表值函数。

Flink 的关系型 API 旨在简化数据分析数据流水线和 ETL 应用的定义。

下面的代码示例展示了如何使用 SQL 语句查询捕获会话时间范围内所有的点击流事件,并对每一次会话的点击量进行计数。此示例与上述 DataStream API 中的示例有着相同的逻辑。

SELECT userId, COUNT(*)
FROM clicks
GROUP BY SESSION(clicktime, INTERVAL ‘30‘ MINUTE), userId

Flink 具有数个适用于常见数据处理应用场景的扩展库。这些库通常嵌入在 API 中,且并不完全独立于其它 API。它们也因此可以受益于 API 的所有特性,并与其他库集成。

  • 复杂事件处理(CEP):模式检测是事件流处理中的一个非常常见的用例。Flink
    的 CEP 库提供了 API,使用户能够以例如正则表达式或状态机的方式指定事件模式。CEP 库与 Flink 的 DataStream API
    集成,以便在 DataStream 上评估模式。CEP 库的应用包括网络入侵检测,业务流程监控和欺诈检测。
  • DataSet API:DataSet API 是 Flink 用于批处理应用程序的核心 API。DataSet API 所提供的基础算子包括mapreduce(outer) joinco-groupiterate等。所有算子都有相应的算法和数据结构支持,对内存中的序列化数据进行操作。如果数据大小超过预留内存,则过量数据将存储到磁盘。Flink
    的 DataSet API 的数据处理算法借鉴了传统数据库算法的实现,例如混合散列连接(hybrid
    hash-join)和外部归并排序(external merge-sort)。
  • Gelly: Gelly 是一个可扩展的图形处理和分析库。Gelly 是在 DataSet API 之上实现的,并与 DataSet API 集成。因此,它能够受益于其可扩展且健壮的操作符。Gelly 提供了内置算法,如 label propagation、triangle enumeration 和 page rank 算法,也提供了一个简化自定义图算法实现的 Graph API

运维

Apache Flink 是一个针对无界和有界数据流进行有状态计算的框架。由于许多流应用程序旨在以最短的停机时间连续运行,因此流处理器必须提供出色的故障恢复能力,以及在应用程序运行期间进行监控和维护的工具。

Apache Flink 非常注重流数据处理的可运维性。因此在这一小节中,我们将详细介绍 Flink 的故障恢复机制,并介绍其管理和监控应用的功能。

7 * 24小时稳定运行

在分布式系统中,服务故障是常有的事,为了保证服务能够7*24小时稳定运行,像Flink这样的流处理器故障恢复机制是必须要有的。显然这就意味着,它(这类流处理器)不仅要能在服务出现故障时候能够重启服务,而且还要当故障发生时,保证能够持久化服务内部各个组件的当前状态,只有这样才能保证在故障恢复时候,服务能够继续正常运行,好像故障就没有发生过一样。

Flink通过几下多种机制维护应用可持续运行及其一致性:

  • 检查点的一致性: Flink的故障恢复机制是通过建立分布式应用服务状态一致性检查点实现的,当有故障产生时,应用服务会重启后,再重新加载上一次成功备份的状态检查点信息。结合可重放的数据源,该特性可保证精确一次(exactly-once)的状态一致性。
  • 高效的检查点: 如果一个应用要维护一个TB级的状态信息,对此应用的状态建立检查点服务的资源开销是很高的,为了减小因检查点服务对应用的延迟性(SLAs服务等级协议)的影响,Flink采用异步及增量的方式构建检查点服务。
  • 端到端的精确一次: Flink 为某些特定的存储支持了事务型输出的功能,及时在发生故障的情况下,也能够保证精确一次的输出。
  • 集成多种集群管理服务: Flink已与多种集群管理服务紧密集成,如 Hadoop YARN, Mesos, 以及 Kubernetes。当集群中某个流程任务失败后,一个新的流程服务会自动启动并替代它继续执行。
  • 内置高可用服务: Flink内置了为解决单点故障问题的高可用性服务模块,此模块是基于Apache ZooKeeper 技术实现的,Apache ZooKeeper是一种可靠的、交互式的、分布式协调服务组件。

Flink能够更方便地升级、迁移、暂停、恢复应用服务

驱动关键业务服务的流应用是经常需要维护的。比如需要修复系统漏洞,改进功能,或开发新功能。然而升级一个有状态的流应用并不是简单的事情,因为在我们为了升级一个改进后版本而简单停止当前流应用并重启时,我们还不能丢失掉当前流应用的所处于的状态信息。

而Flink的 Savepoint
服务就是为解决升级服务过程中记录流应用状态信息及其相关难题而产生的一种唯一的、强大的组件。一个
Savepoint,就是一个应用服务状态的一致性快照,因此其与checkpoint组件的很相似,但是与checkpoint相比,Savepoint
需要手动触发启动,而且当流应用服务停止时,它并不会自动删除。Savepoint
常被应用于启动一个已含有状态的流服务,并初始化其(备份时)状态。Savepoint 有以下特点:

  • 便于升级应用服务版本: Savepoint
    常在应用版本升级时使用,当前应用的新版本更新升级时,可以根据上一个版本程序记录的 Savepoint
    内的服务状态信息来重启服务。它也可能会使用更早的 Savepoint
    还原点来重启服务,以便于修复由于有缺陷的程序版本导致的不正确的程序运行结果。
  • 方便集群服务移植: 通过使用 Savepoint,流服务应用可以自由的在不同集群中迁移部署。
  • 方便Flink版本升级: 通过使用 Savepoint,可以使应用服务在升级Flink时,更加安全便捷。
  • 增加应用并行服务的扩展性: Savepoint 也常在增加或减少应用服务集群的并行度时使用。
  • 便于A/B测试及假设分析场景对比结果: 通过把同一应用在使用不同版本的应用程序,基于同一个 Savepoint 还原点启动服务时,可以测试对比2个或多个版本程序的性能及服务质量。
  • 暂停和恢复服务: 一个应用服务可以在新建一个 Savepoint 后再停止服务,以便于后面任何时间点再根据这个实时刷新的 Savepoint 还原点进行恢复服务。
  • 归档服务: Savepoint 还提供还原点的归档服务,以便于用户能够指定时间点的 Savepoint 的服务数据进行重置应用服务的状态,进行恢复服务。

监控和控制应用服务

如其它应用服务一样,持续运行的流应用服务也需要监控及集成到一些基础设施资源管理服务中,例如一个组件的监控服务及日志服务等。监控服务有助于预测问题并提前做出反应,日志服务提供日志记录能够帮助追踪、调查、分析故障发生的根本原因。最后,便捷易用的访问控制应用服务运行的接口也是Flink的一个重要的亮点特征。

Flink与许多常见的日志记录和监视服务集成得很好,并提供了一个REST API来控制应用服务和查询应用信息。具体表现如下:

  • Web UI方式: Flink提供了一个web UI来观察、监视和调试正在运行的应用服务。并且还可以执行或取消组件或任务的执行。
  • 日志集成服务:Flink实现了流行的slf4j日志接口,并与日志框架log4jlogback集成。
  • 指标服务: Flink提供了一个复杂的度量系统来收集和报告系统和用户定义的度量指标信息。度量信息可以导出到多个报表组件服务,包括 JMX, Ganglia, Graphite, Prometheus, StatsD, Datadog, 和 Slf4j.
  • 标准的WEB REST API接口服务: Flink提供多种REST API接口,有提交新应用程序、获取正在运行的应用程序的Savepoint服务信息、取消应用服务等接口。REST API还提供元数据信息和已采集的运行中或完成后的应用服务的指标信息。

来源: https://flink.apache.org/zh/flink-architecture.html

原文地址:https://www.cnblogs.com/onion94/p/11638022.html

时间: 2024-11-10 14:52:58

Apache Flink 是什么?的相关文章

Apache Flink流分区器剖析

这篇文章介绍Flink的分区器,在流进行转换操作后,Flink通过分区器来精确得控制数据流向. StreamPartitioner StreamPartitioner是Flink流分区器的基类,它只定义了一个抽象方法: public abstract StreamPartitioner<T> copy(); 但这个方法并不是各个分区器之间互相区别的地方,定义不同的分区器的核心在于--各个分区器需要实现channel选择的接口方法: int[] selectChannels(T record,

Apache Flink fault tolerance源码剖析(四)

上篇文章我们探讨了Zookeeper在Flink的fault tolerance中发挥的作用(存储/恢复已完成的检查点以及检查点编号生成器). 这篇文章会谈论一种特殊的检查点,Flink将之命名为--Savepoint(保存点). 因为保存点只不过是一种特殊的检查点,所以在Flink中并没有太多代码实现.但作为一个特性,值得花费一个篇幅来介绍. 检查点VS保存点 使用数据流API编写的程序可以从保存点来恢复执行.保存点允许你在更新程序的同时还能保证Flink集群不丢失任何状态. 保存点是人工触发

Apache Flink fault tolerance源码剖析(一)

因某些童鞋的建议,从这篇文章开始结合源码谈谈Flink Fault Tolerance相关的话题.上篇官方介绍的翻译是理解这个话题的前提,所以如果你想更深入得了解Flink Fault Tolerance的机制,推荐先读一下前篇文章理解它的实现原理.当然原理归原理,原理体现在代码实现里并不是想象中的那么直观.这里的源码剖析也是我学习以及理解的过程. 作为源码解析Flink Fault Tolerance的首篇文章,我们先暂且不谈太有深度的东西,先来了解一下:Flink哪里涉及到检查点/快照机制来

Apache Flink fault tolerance源码剖析完结篇

这篇文章是对Flinkfault tolerance的一个总结.虽然还有些细节没有涉及到,但是基本的实现要点在这个系列中都已提及. 回顾这个系列,每篇文章都至少涉及一个知识点.我们来挨个总结一下. 恢复机制实现 Flink中通常需要进行状态恢复的对象是operator以及function.它们通过不同的方式来达到状态快照以及状态恢复的能力.其中function通过实现Checkpointed的接口,而operator通过实现StreamOpeator接口.这两个接口的行为是类似的. 当然对于数据

Apache Flink

Flink 剖析 1.概述 在如今数据爆炸的时代,企业的数据量与日俱增,大数据产品层出不穷.今天给大家分享一款产品—— Apache Flink,目前,已是 Apache 顶级项目之一.那么,接下来,笔者为大家介绍Flink 的相关内容. 2.内容 2.1 What's Flink Apache Flink 是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处

Apache Flink fault tolerance源码剖析(三)

上一篇文章我们探讨了基于定时任务的周期性检查点触发机制以及基于Akka的actor模型的消息驱动协同机制.这篇文章我们将探讨Zookeeper在Flink的Fault Tolerance所起到的作用. 其实,Flink引入Zookeeper的目的主要是让JobManager实现高可用(leader选举). 因为Zookeeper在Flink里存在多种应用场景,本篇我们还是将重心放在Fault Tolerance上,即讲解Zookeeper在检查点的恢复机制上发挥的作用. 如果用一幅图表示快照机制

Apache Flink 1.3.0正式发布及其新功能介绍

下面文档是今天早上翻译的,因为要上班,时间比较仓促,有些部分没有翻译,请见谅. 2017年06月01日儿童节 Apache Flink 社区正式发布了 1.3.0 版本.此版本经历了四个月的开发,共解决了680个issues.Apache Flink 1.3.0 是 1.x.y 版本线上的第四个主要版本,其 API 和其他 1.x.y 使用 @Public 注释的API是兼容的. 此外,Apache Flink 社区目前制定了每四月发行一个主要版本(Apache Flink 1.2.0 是201

Apache Flink源码解析之stream-operator

前面我们谈论了Flink stream中的transformation.你可以将transformation看成编写Flink程序并构建流式处理程序的必要组成部分(静态表现形式):而本篇我们将探讨transformation在Flink运行时对应的动态表现形式--operator.他们之间的映射关系见下图: 具体的探讨可以查看前文:Flink中的一些核心概念 StreamOperator 所有operator的最终基类,operator的分类方式,按照输入流个数不同分为: 无输入:StreamS

Apache Flink fault tolerance源码剖析(五)

上一篇文章我们谈论了保存点的相关内容,其中就谈到了保存点状态的存储.这篇文章我们来探讨用户程序状态的存储,也是在之前的文章中多次提及的state backend(中文暂译为状态终端). 基于数据流API而编写的程序经常以各种各样的形式保存着状态: 窗口收集/聚合元素(这里的元素可以看作是窗口的状态)直到它们被触发 转换函数可能会使用key/value状态接口来存储数据 转换函数可能实现Checkpointed接口来让它们的本地变量受益于fault tolerant机制 当检查点机制工作时,上面谈

新一代大数据处理引擎 Apache Flink

https://www.ibm.com/developerworks/cn/opensource/os-cn-apache-flink/index.html 大数据计算引擎的发展 这几年大数据的飞速发展,出现了很多热门的开源社区,其中著名的有 Hadoop.Storm,以及后来的 Spark,他们都有着各自专注的应用场景.Spark 掀开了内存计算的先河,也以内存为赌注,赢得了内存计算的飞速发展.Spark 的火热或多或少的掩盖了其他分布式计算的系统身影.就像 Flink,也就在这个时候默默的发