1043 Is It a Binary Search Tree (25分)(树的插入)

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node‘s key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node‘s key.
  • Both the left and right subtrees must also be binary search trees.

If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:

For each test case, first print in a line YES if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or NO if not. Then if the answer is YES, print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input 1:

7
8 6 5 7 10 8 11

Sample Output 1:

YES
5 7 6 8 11 10 8

Sample Input 2:

7
8 10 11 8 6 7 5

Sample Output 2:

YES
11 8 10 7 5 6 8

Sample Input 3:

7
8 6 8 5 10 9 11

Sample Output 3:

NO题目分析:树的插入 因为给的是先序遍历 所以每次插入时 如果插入的是左子树 那么它的父亲的右节点必然为空 不然就插入失败 对于对称的情况也是类似因此 我们只需要知道在插入时 每个节点左右子树是否存在就可

  1 #define _CRT_SECURE_NO_WARNINGS
  2 #include <climits>
  3 #include<iostream>
  4 #include<vector>
  5 #include<queue>
  6 #include<map>
  7 #include<set>
  8 #include<stack>
  9 #include<algorithm>
 10 #include<string>
 11 #include<cmath>
 12 using namespace std;
 13 typedef struct Node* PtrToNode;
 14 vector<int> V;
 15 struct Node{
 16     int data;
 17     PtrToNode Left, Right;
 18     bool LE, RI;
 19 };
 20 bool Insert(PtrToNode&T,int Element)
 21 {
 22     if (!T){
 23         T = new Node;
 24         T->data = Element;
 25         T->Left = NULL;
 26         T->Right = NULL;
 27         T->LE = false;
 28         T->RI = false;
 29     }
 30     else
 31         if (Element < T->data){
 32             if (T->RI)
 33                 return false;
 34             else{
 35                 T->LE = true;
 36                 return Insert(T->Left, Element);
 37             }
 38         }
 39         else{
 40             T->RI = true;
 41             return Insert(T->Right, Element);
 42         }
 43     return true;
 44 }
 45 bool InsertR(PtrToNode& T, int Element)
 46 {
 47     if (!T) {
 48         T = new Node;
 49         T->data = Element;
 50         T->Left = NULL;
 51         T->Right = NULL;
 52         T->LE = false;
 53         T->RI = false;
 54     }
 55     else
 56         if (Element >=T->data) {
 57             if (T->RI)
 58                 return false;
 59             else {
 60                 T->LE = true;
 61                 return InsertR(T->Left, Element);
 62             }
 63         }
 64         else {
 65             T->RI = true;
 66             return InsertR(T->Right, Element);
 67         }
 68     return true;
 69 }
 70 void PostOrder(PtrToNode T)
 71 {
 72     if(T)
 73     {
 74         PostOrder(T->Left);
 75         PostOrder(T->Right);
 76         V.push_back(T->data);
 77     }
 78 }
 79 int main()
 80 {
 81     int N;
 82     cin >> N;
 83     int num;
 84     PtrToNode TL = NULL, TR = NULL;
 85     bool flagL,flagR;
 86     flagL = flagR = true;
 87     for (int i = 0; i < N; i++)
 88     {
 89         cin >> num;
 90         if(flagL)flagL = Insert(TL, num);
 91         if(flagR)flagR = InsertR(TR, num);
 92         if (!flagL&&!flagR)
 93             break;
 94     }
 95     if (flagL||flagR)
 96     {
 97         cout << "YES"<<endl;
 98         if (flagL)
 99             PostOrder(TL);
100         else
101             PostOrder(TR);
102         for (auto it = V.begin(); it != (V.end() - 1); it++)
103             cout << *it << " ";
104         cout << *(V.end() - 1);
105     }
106     else
107         cout << "NO";
108
109 }

原文地址:https://www.cnblogs.com/57one/p/12031038.html

时间: 2024-10-30 16:54:45

1043 Is It a Binary Search Tree (25分)(树的插入)的相关文章

1043 Is It a Binary Search Tree (25 分)

1043 Is It a Binary Search Tree (25 分) A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a no

PAT Advanced 1043 Is It a Binary Search Tree (25分)

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a node contains only nodes with keys greate

【PAT甲级】1043 Is It a Binary Search Tree (25 分)(判断是否为BST的先序遍历并输出后序遍历)

题意: 输入一个正整数N(<=1000),接下来输入N个点的序号.如果刚才输入的序列是一颗二叉搜索树或它的镜像(中心翻转180°)的先序遍历,那么输出YES并输出它的后序遍历,否则输出NO. trick: for(auto it:post) cout<<it<<((it!=post[n-1])?" ":""); 这样输出会使第0,1数据点格式错误...原因未知 cout<<post[0]; for(int i=1;i<

1043 Is It a Binary Search Tree (25分)

1. 题目 2. 思路 如下图 发现规律,对于最左边来说,后面所有的集合都是先小后大或者先大后小,如果小大交错那么不符合 使用1中规律确定是否为镜像,结合二叉排序树的特点,用递归建立树 输出树的后序遍历 3. 注意点 发现规律比较困难 树的题目一般都要用递归 4. 代码 #include<cstdio> #include<algorithm> #include<vector> using namespace std; #define null NULL struct n

1043. Is It a Binary Search Tree (25)【二叉树】——PAT (Advanced Level) Practise

题目信息 1043. Is It a Binary Search Tree (25) 时间限制400 ms 内存限制65536 kB 代码长度限制16000 B A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than

PAT 1043. Is It a Binary Search Tree (25)

1043. Is It a Binary Search Tree (25) A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than the node's key. The right subtree of a nod

1043. Is It a Binary Search Tree (25)

时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue (二叉树建立方法) A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The left subtree of a node contains only nodes with keys less than th

7-20 Binary Search Tree (25分)

A binary search tree is uniquely determined by a given ordered insertions of a sequence of positive integers. On the other hand, a given binary search tree may correspond to several different insertion sequences. Now given several insertion sequences

A1043 Is It a Binary Search Tree (25分)

一.技术总结 这一题是二叉排序树的问题,题目主要是给出二叉排序树的先序遍历或者二叉排序树镜像的先序遍历或其他,如果是前两种输出YES,并且输出各自的后序遍历.后者直接输出NO 关键在于创建树,据我观察发现无论是镜像的先序遍历还是原来二叉排序树的先序遍历,可以直接根据二叉排序树的特点进行树的创建.用inset函数,创建出来都是二叉排序树,没有镜像与不镜像之分.到了这一步,只需处理如何将这个标准的二叉排序树,变成镜像的先序遍历,其实只要将左右子树递归的顺序换一下即可.详细参考代码. 然后就是将其进行