Linux System Programming 学习笔记(十) 信号

1. 信号是软中断,提供处理异步事件的机制

异步事件可以是来源于系统外部(例如用户输入Ctrl-C)也可以来源于系统内(例如除0)

内核使用以下三种方法之一来处理信号:

(1) 忽略该信号。SIGKILL和SIGSTOP不能被忽略。

(2) 捕捉并且处理该信号。The kernel will
suspend execution of the process’s current code path and jump to a previously
registered function.

SIGKILL和SIGSTOP不能被捕捉

(2) 执行默认操作。

SIGCHLD:进程终止时,内核向其父进程发送SIGCHLD信号,默认是忽略,如果父进程需要子进程终止信息,而需要显式处理,通常是调用wait函数

SIGINT:用户输入中断字符 Ctrl-C

SIGKILL,SIGSTOP:kill系统调用发出的信号,不能被忽略,不能被捕捉,结果总是终止进程

SIGSEGV:段错误

2. 基本的信号管理

#include <signal.h>
typedef void (*sighandler_t)(int);
sighandler_t signal (int signo, sighandler_t handler);

signal() removes the current
action taken on receipt of the signal signo and instead handles the
signal with the signal handler specified by handler


#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
/* handler for SIGINT and SIGTERM */
static void signal_handler (int signo)
{
if (signo == SIGINT)
printf ("Caught SIGINT!\n");
else if (signo == SIGTERM)
printf ("Caught SIGTERM!\n");
else {
/* this should never happen */
fprintf (stderr, "Unexpected signal!\n");
exit (EXIT_FAILURE);
}
exit (EXIT_SUCCESS);
}
int main (void)
{
/*
* Register signal_handler as our signal handler
* for SIGINT.
*/
if (signal (SIGINT, signal_handler) == SIG_ERR) {
fprintf (stderr, "Cannot handle SIGINT!\n");
exit (EXIT_FAILURE);
}
/*
* Register signal_handler as our signal handler
* for SIGTERM.
*/
if (signal (SIGTERM, signal_handler) == SIG_ERR) {
fprintf (stderr, "Cannot handle SIGTERM!\n");
exit (EXIT_FAILURE);
}
/* Reset SIGPROF‘s behavior to the default. */
if (signal (SIGPROF, SIG_DFL) == SIG_ERR) {
fprintf (stderr, "Cannot reset SIGPROF!\n");
exit (EXIT_FAILURE);
}
/* Ignore SIGHUP. */
if (signal (SIGHUP, SIG_IGN) == SIG_ERR) {
fprintf (stderr, "Cannot ignore SIGHUP!\n");
exit (EXIT_FAILURE);
}
for (;;)
pause ();
return 0;
}


#include <signal.h>
int sigaction (int signo, const struct sigaction *act, struct sigaction *oldact);

struct sigaction {
void (*sa_handler)(int); /* signal handler or action */
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask; /* signals to block */
int sa_flags; /* flags */
void (*sa_restorer)(void); /* obsolete and non-POSIX */
};

sigaction() changes the behavior of the signal identified by signo,
signo不能为SIGKILL和SIGSTOP

If act is not NULL, the system call changes the current behavior of the
signal as specified by act

信号行为的继承:

3. 发送信号:

int ret;
ret = kill (1722, SIGHUP);
if (ret)
perror ("kill");

上述代码表示:向pid为1722的进程发送SIGHUP信号

上述代码与以下shell语句等同:

$ kill -HUP 1722

/*  a simple way for a process to send a signal to itself */
#include <signal.h>
int raise (int signo);

raise (signo);

等同于:

kill (getpid (), signo);

4. 可重入

A reentrant function is a function that is safe to call from within itself
(or concurrently, from another thread in the same process).

为了确保可重入,函数不能操作static变量,只能操作 stack-allocated
data,并且不能调用 不可重入函数

Linux System Programming 学习笔记(十) 信号,布布扣,bubuko.com

时间: 2024-10-06 15:44:59

Linux System Programming 学习笔记(十) 信号的相关文章

Linux System Programming 学习笔记(五) 进程管理

1. 进程是unix系统中两个最重要的基础抽象之一(另一个是文件) A process is a running program A thread is the unit of activity inside of a process the virtualization of memory is associated with the process, the threads all share the same memory address space 2. pid The idle pro

Linux System Programming 学习笔记(二) 文件I/O

1.每个Linux进程都有一个最大打开文件数,默认情况下,最大值是1024 文件描述符不仅可以引用普通文件,也可以引用套接字socket,目录,管道(everything is a file) 默认情况下,子进程会获得其父进程文件表的完整拷贝 2.打开文件 open系统调用必须包含 O_RDONLY,O_WRONLY,O_RDWR 三种存取模式之一 注意 O_NONBLOCK模式 int fd = open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0644

Linux System Programming 学习笔记(八) 文件和目录管理

1. 文件和元数据 每个文件都是通过inode引用,每个inode索引节点都具有文件系统中唯一的inode number 一个inode索引节点是存储在Linux文件系统的磁盘介质上的物理对象,也是LInux内核通过数据结构表示的实体 inode存储相关联文件的元数据 ls -i 命令获取文件的inode number /* obtaining the metadata of a file */ #include <sys/types.h> #include <sys/stat.h>

Linux System Programming 学习笔记(九) 内存管理

1. 进程地址空间 Linux中,进程并不是直接操作物理内存地址,而是每个进程关联一个虚拟地址空间 内存页是memory management unit (MMU) 可以管理的最小地址单元 机器的体系结构决定了内存页大小,32位系统通常是 4KB, 64位系统通常是 8KB 内存页分为 valid or invalid: A valid page is associated with an actual page of data,例如RAM或者磁盘上的文件 An invalid page is

Linux System Programming 学习笔记(七) 线程

1. Threading is the creation and management of multiple units of execution within a single process 二进制文件是驻留在存储介质上,已被编译成操作系统可以使用,准备执行但没有正运行的休眠程序 进程是操作系统对 正在执行中的二进制文件的抽象:已加载的二进制.虚拟内存.内核资源 线程是进程内的执行单元 processes are running binaries, threads are the smal

Linux System Programming 学习笔记(十一) 时间

1. 内核提供三种不同的方式来记录时间: Wall time (or real time):actual time and date in the real world Process time:the time that a process spends executing on a processor 包括用户时间user time 和 系统时间system time Monotonic time:use the system's uptime (time since boot) for t

Linux System Programming 学习笔记(六) 进程调度

1. 进程调度 the process scheduler is the component of a kernel that selects which process to run next. 进程调度器需要使 处理器使用率最大化,并且提供 使多个进程并发执行的虚拟 Deciding which processes run, when, and for how long is the process scheduler's fundamental responsibility. 时间片:th

Linux System Programming 学习笔记(四) 高级I/O

1. Scatter/Gather I/O a single system call  to  read or write data between single data stream and multiple buffers This type of I/O is so named because the data is scattered into or gathered from the given vector of buffers Scatter/Gather I/O 相比于 C标准

Linux System Programming 学习笔记(一) 介绍

1. Linux系统编程的三大基石:系统调用.C语言库.C编译器 系统调用:内核向用户级程序提供服务的唯一接口.在i386中,用户级程序执行软件中断指令 INT n 之后切换至内核空间 用户程序通过寄存器告知内核执行系统调用的所需参数 2. API 和 ABI API:application programming interface 定义源码级接口,必须确保源码级兼容 ABI:application binary interface 定义二进制接口,必须确保二进制兼容 ABI包括:调用约定.字