Strategic game(POJ 1463 树形DP)

Strategic game

Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 7490   Accepted: 3483

Description

Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

Your program should find the minimum number of soldiers that Bob has to put for a given tree.

For example for the tree: 

the solution is one soldier ( at the node 1).

Input

The input contains several data sets in text format. Each data set represents a tree with the following description:

  • the number of nodes
  • the description of each node in the following format 
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifiernumber_of_roads 
    or 
    node_identifier:(0)

The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500);the number_of_roads in each line of input will no more than 10. Every edge appears only once in the input data.

Output

The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following:

Sample Input

4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)

Sample Output

1
2

Source

Southeastern Europe 2000

一道简单的树形DP,状态转移方程:和上一次做的题目基本一样

  dp[node][0]+=dp[tree[node][i]][1];

  dp[node][1]+=min(dp[tree[node][i]][0],dp[tree[node][i]][1]);  然后+1

一开始写成 dp[node][1]+=dp[tree[node][i]][0];

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <algorithm>
 4 #include <cstring>
 5 using namespace std;
 6 #define Max 1506
 7 int dp[Max][2],fa[Max],tree[Max][12];
 8 int n;
 9 int num[Max];
10 void tree_dp(int node)
11 {
12     int i;
13     for(i=0;i<num[node];i++)
14     {
15         tree_dp(tree[node][i]);
16         dp[node][0]+=dp[tree[node][i]][1];
17         dp[node][1]+=min(dp[tree[node][i]][0],dp[tree[node][i]][1]);
18     }
19     dp[node][1]++;
20     return;
21 }
22 int main()
23 {
24     int i,j;
25     int a,b;
26     int k,root,f;
27     freopen("in.txt","r",stdin);
28     while(scanf("%d",&n)!=EOF)
29     {
30         memset(dp,0,sizeof(dp));
31         memset(tree,0,sizeof(tree));
32         for(i=0;i<Max;i++)
33             fa[i]=-1;
34         for(i=0;i<n;i++)
35         {
36             scanf("%d%*c%*c%d%*c",&f,&k);
37             num[f]=k;
38             for(j=0;j<k;j++)
39             {
40                 scanf("%d",&tree[f][j]);
41                 fa[tree[f][j]]=f;
42             }
43         }
44         root=0;
45         while(fa[root]!=-1)
46             root=fa[root];
47         tree_dp(root);
48         printf("%d\n",min(dp[root][0],dp[root][1]));
49     }
50     return 0;
51 }
时间: 2024-10-05 01:37:50

Strategic game(POJ 1463 树形DP)的相关文章

poj 1463(树形DP)

Strategic game Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 7584   Accepted: 3518 Description Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad

poj 1463 树形dp入门

很简单的树形dp题目,转移方程是: dp[u][0] += dp[v][1];     dp[u][1] += min( dp[v][0], dp[v][1] ); 其中u是v的父亲节点. 1 #include <algorithm> 2 #include <iostream> 3 #include <cstring> 4 #include <cstdio> 5 using namespace std; 6 7 const int N = 1500; 8 b

poj 1463树形dp 树的最小覆盖

#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<queue> #include<vector> using namespace std; // push_back inline int read(){ int sum=0,x=1; char ch=getchar(); while(ch<'0'||ch>'9

树形dp compare E - Cell Phone Network POJ - 3659 B - Strategic game POJ - 1463

B - Strategic game POJ - 1463 题目大意:给你一棵树,让你放最少的东西来覆盖所有的边 这个题目之前写过,就是一个简单的树形dp的板题,因为这个每一个节点都需要挺好处理的. 这个树形dp是从底往根部来递推,所以每一个点,都是由它的根节点来递推的. 如果一个根节点的子节点放了东西,那么这个根节点就可以有选择,但是如果没有放东西,那么这个根节点就必须放东西. E - Cell Phone Network POJ - 3659 题目大意:给你一棵树,让你用最小的东西来覆盖所有

poj 3342(树形dp)

题意:在一个公司中要举办一个聚会,每一个员工有一个奉献值.为了和谐规定直接上下级不能一起出席.让你找出奉献值之和最大为多少. 思路:dp[v][1]表示当前结点选,能获得的最大奉献值,dp[v][0]表示当前节点不选能获得的最大奉献值.状态转移: dp[v][0] = max(dp[v][0], ∑max(dp[x][1], dp[x][0]))x为直接儿子 dp[v][1] = max(dp[v][1], ∑dp[x][0] + vex[v]) 最后答案是max(dp[root][0], dp

poj 1947(树形dp)

题意:一棵树上问你最少切掉几条边使得能分割出一个结点数正好为k的子树. 思路:dp[i][j]表示以i为根切掉j个结点最少要几条边. dp[v][j] = min(dp[v][j], dp[v][j-k] + dp[x][k]); 代码如下: 1 dp[v][j] = min(dp[v][j], dp[v][j-k] + dp[x][k]); 2 } 3 } 4 } 5 } 6 } 7 return vex[v]; 8 } 9 10 int main() 11 { 12 // freopen("

POJ 2486 树形DP

有一颗苹果树,每个节点上面有很多苹果,从一个节点到另外一个可以到达的节点花费1步,求k步最多能吃到多少苹果,起始点为1,可以不回到起始点. 这是典型的回溯型树状dp. dp[i][j][0]代表以i为根节点的子树最多j步后回到i能吃到的最多的苹果, dp[i][j][1]代表以i为根节点的子树最多j步后不回到i节点最多能吃到的子树.那么状态转移就分三步了. (1)dp[i][j+2][0] = max(dp[i][j+2][0], dp[i][j-k][0]+dp[son][k][0]); (2

POJ 3342 树形DP入门题

题目意思和POJ2342一样,只是多加了一个条件,如果最大方案数唯一,输出Yes,不唯一输出No dp的是时候多加一个变量记录答案是否唯一即可 #include "stdio.h" #include "string.h" #include "vector" using namespace std; struct node { int fa; vector<int>child; }data[210]; struct comp { int

POJ 1947 树形DP入门题

给出N个点,N-1个关系,建出树形图,问最少减去几个边能得到节点数为P的树.典型树形DP题 dp[cur][j] :记录cur结点,要得到一棵j个节点的子树去掉的最少边数 转移方程用的背包的思想 对当前树的每一个子树进行计算 砍掉此子树:   dp[cur][j]=dp[cur][j]+1; 不砍掉:           for (l=0;l<=j;l++)  dp[cur][j]=Min(dp[cur][j],dp[cur][l]+dp[next][j-l]); 枚举从该树中留l个节点其他由新