[CF430D]Working out(DP)

题目链接:http://codeforces.com/problemset/problem/430/D

题意:两个人在操场上分别从左上角和左下角到右下角和右上角,左上角的人只能向右向下,左下角的人只能向右向上。他们必须在某一时刻见面一次,操场上每个点有一个值,问如何选取交点使得他们的值总和最大,他们交点的值不计。

先在四个角到对角线的角做dp,求出最长的路径,再根据两个人的行走情况枚举所有可能的交点,并统计最值。

  1 /*
  2 ━━━━━┒ギリギリ♂ eye!
  3 ┓┏┓┏┓┃キリキリ♂ mind!
  4 ┛┗┛┗┛┃\○/
  5 ┓┏┓┏┓┃ /
  6 ┛┗┛┗┛┃ノ)
  7 ┓┏┓┏┓┃
  8 ┛┗┛┗┛┃
  9 ┓┏┓┏┓┃
 10 ┛┗┛┗┛┃
 11 ┓┏┓┏┓┃
 12 ┛┗┛┗┛┃
 13 ┓┏┓┏┓┃
 14 ┃┃┃┃┃┃
 15 ┻┻┻┻┻┻
 16 */
 17 #include <algorithm>
 18 #include <iostream>
 19 #include <iomanip>
 20 #include <cstring>
 21 #include <climits>
 22 #include <complex>
 23 #include <fstream>
 24 #include <cassert>
 25 #include <cstdio>
 26 #include <bitset>
 27 #include <vector>
 28 #include <deque>
 29 #include <queue>
 30 #include <stack>
 31 #include <ctime>
 32 #include <set>
 33 #include <map>
 34 #include <cmath>
 35 using namespace std;
 36 #define fr first
 37 #define sc second
 38 #define cl clear
 39 #define BUG puts("here!!!")
 40 #define W(a) while(a--)
 41 #define pb(a) push_back(a)
 42 #define Rint(a) scanf("%d", &a)
 43 #define Rll(a) scanf("%I64d", &a)
 44 #define Rs(a) scanf("%s", a)
 45 #define Cin(a) cin >> a
 46 #define FRead() freopen("in", "r", stdin)
 47 #define FWrite() freopen("out", "w", stdout)
 48 #define Rep(i, len) for(int i = 0; i < (len); i++)
 49 #define For(i, a, len) for(int i = (a); i < (len); i++)
 50 #define Cls(a) memset((a), 0, sizeof(a))
 51 #define Clr(a, x) memset((a), (x), sizeof(a))
 52 #define Full(a) memset((a), 0x7f7f7f, sizeof(a))
 53 #define lrt rt << 1
 54 #define rrt rt << 1 | 1
 55 #define pi 3.14159265359
 56 #define RT return
 57 #define lowbit(x) x & (-x)
 58 #define onecnt(x) __builtin_popcount(x)
 59 typedef long long LL;
 60 typedef long double LD;
 61 typedef unsigned long long ULL;
 62 typedef pair<int, int> pii;
 63 typedef pair<string, int> psi;
 64 typedef pair<LL, LL> pll;
 65 typedef map<string, int> msi;
 66 typedef vector<int> vi;
 67 typedef vector<LL> vl;
 68 typedef vector<vl> vvl;
 69 typedef vector<bool> vb;
 70
 71 const int maxn = 1010;
 72 int dp[5][maxn][maxn];
 73 int a[maxn][maxn];
 74 int n, m;
 75
 76 int main() {
 77     // FRead();
 78     scanf("%d %d", &n, &m);
 79     for (int i = 1; i <= n; ++i)
 80         for (int j = 1; j <= m; ++j)
 81             scanf("%d", &a[i][j]);
 82     for (int i = 1; i <= n; ++i)
 83         for (int j = 1; j <= m; ++j)
 84             dp[1][i][j] = a[i][j] + max(dp[1][i-1][j], dp[1][i][j-1]);
 85     for (int i = n; i >= 1; --i)
 86         for (int j = m; j >= 1; --j)
 87             dp[4][i][j] = a[i][j] + max(dp[4][i][j+1], dp[4][i+1][j]);
 88     for (int i = n; i >= 1; --i)
 89         for (int j = 1; j <= m; ++j)
 90             dp[3][i][j] = a[i][j] + max(dp[3][i][j-1], dp[3][i+1][j]);
 91     for (int i = 1; i <= n; ++i)
 92         for (int j = m; j >= 1; --j)
 93             dp[2][i][j] = a[i][j] + max(dp[2][i-1][j], dp[2][i][j+1]);
 94     int ans = 0;
 95     for (int i = 2; i < n; ++i)
 96         for (int j = 2; j < m; ++j) {
 97             ans = max(ans, dp[1][i][j-1] + dp[4][i][j+1] + dp[3][i+1][j] + dp[2][i-1][j]);
 98             ans = max(ans, dp[1][i-1][j] + dp[4][i+1][j] + dp[3][i][j-1] + dp[2][i][j+1]);
 99         }
100     printf("%d\n", ans);
101     return 0;
102 }
时间: 2024-11-10 13:29:33

[CF430D]Working out(DP)的相关文章

hdu 5623 KK&#39;s Number(dp)

问题描述 我们可爱的KK有一个有趣的数学游戏:这个游戏需要两个人,有N\left(1\leq N\leq 5*{10}^{4} \right)N(1≤N≤5∗10?4??)个数,每次KK都会先拿数.每次可以拿任意多个数,直到NN个数被拿完.每次获得的得分为取的数中的最小值,KK和对手的策略都是尽可能使得自己的得分减去对手的得分更大.在这样的情况下,最终KK的得分减去对手的得分会是多少? 输入描述 第一行一个数T\left( 1\leq T\leq 10\right)T(1≤T≤10),表示数据组

Ural 1353 Milliard Vasya&#39;s Function(DP)

题目地址:Ural 1353 定义dp[i][j],表示当前位数为i位时,各位数和为j的个数. 对于第i位数来说,总可以看成在前i-1位后面加上一个0~9,所以状态转移方程就很容易出来了: dp[i][j]=dp[i][j]+dp[i][j-1]+dp[i][j-2]+.......+dp[i][j-9]: 最后统计即可. 代码如下: #include <iostream> #include <cstdio> #include <string> #include <

HDU 4908 (杭电 BC #3 1002题)BestCoder Sequence(DP)

题目地址:HDU 4908 这个题是从m开始,分别往前DP和往后DP,如果比m大,就比前面+1,反之-1.这样的话,为0的点就可以与m这个数匹配成一个子串,然后左边和右边的相反数的也可以互相匹配成一个子串,然后互相的乘积最后再加上就行了.因为加入最终两边的互相匹配了,那就说明左右两边一定是偶数个,加上m就一定是奇数个,这奇数个的问题就不用担心了. 代码如下: #include <iostream> #include <stdio.h> #include <string.h&g

Sicily 1146:Lenny&#39;s Lucky Lotto(dp)

题意:给出N,M,问有多少个长度为N的整数序列,满足所有数都在[1,M]内,并且每一个数至少是前一个数的两倍.例如给出N=4, M=10, 则有4个长度为4的整数序列满足条件: [1, 2, 4, 8], [1, 2, 4, 9], [1, 2, 4, 10], [1, 2, 5, 10] 分析:可用动态规划解题,假设dp[i][j],代表满足以整数i为尾数,长度为j的序列的个数(其中每一个数至少是前一个数的两倍).那么对于整数i,dp[i][j] 等于所有dp[k][j-1]的和,其中k满足:

UVA542 - France &#39;98(dp)

UVA542 - France '98(dp) 题目链接 题目大意:之前题目意思还以为看懂了,其实没看明白,它已经把各个选手分在各自所在的区域里面,这就意味着第一次的PK的分组已经确定,而且冠军必须是从两个左右分区出来的胜利者才有机会pk冠军. 解题思路:那么从1-16这个大的区间内诞生出来的冠军可能是来自左边,也可能是右边,然后再左边右边的子区间递归找出冠军.f[i][l][r]表示l-r这个区间的胜利者是i的概率,那么假设i在区间的最左边,f[i][l][r] = Sum(f[i][l][m

HDU 4968 Improving the GPA(dp)

HDU 4968 Improving the GPA 题目链接 dp,最大最小分别dp一次,dp[i][j]表示第i个人,还有j分的情况,分数可以减掉60最为状态 代码: #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int t, avg, n; double dp1[15][405], dp2[15][405]; double get(int x) { if

URAL 1167. Bicolored Horses (DP)

题目链接 题意 :农夫每天都会放马出去,然后晚上把马赶入马厩,于是让马排成一行入马厩,但是不想马走更多的路,所以让前p1匹入第一个马厩,p2匹马入第二个马厩…………但是他不想让他的任何一个马厩空着,所有的马都必须入马厩.有两种颜色的马,如果 i 匹黑马与 j 匹白马同在一个马厩,不愉快系数是 i * j,总系数就是k个系数相加.让总系数最小. 思路 : dp[i][j] 代表的是前 i 个马厩放 j 匹马的最小不愉快系数值. 1 //1167 2 #include <cstdio> 3 #in

2014多校第七场1005 || HDU 4939 Stupid Tower Defense (DP)

题目链接 题意 :长度n单位,从头走到尾,经过每个单位长度需要花费t秒,有三种塔: 红塔 :经过该塔所在单位时,每秒会受到x点伤害. 绿塔 : 经过该塔所在单位之后的每个单位长度时每秒都会经受y点伤害. 蓝塔 : 经过该塔所在单位之后,再走每个单位长度的时候时间会变成t+z. 思路 : 官方题解 : 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #define LL long long

hdu4939 Stupid Tower Defense (DP)

2014多校7 第二水的题 4939 Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 366    Accepted Submission(s): 88 Problem Description FSF is addicted to a stupid tower defense game.