内存分配问题

2012-10-25 21:23 4683人阅读 评论(2) 收藏 举报

有段时间不敲代码了,忘了不少东西,因为一个数组的动态分配,引出一连串的问题,往后要重新拾起来啊!步入正题

//------------------------------------------------------------------------------------------------

第一部分 C++内存分配

//------------------------------------------------------------------------------------------------

一。关于内存

 1、内存分配方式

  内存分配方式有三种:

  (1)从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在

。例如全局变量,static变量。

  (2)在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存

储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。

  (3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自

己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

2.内存使用错误
      发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。

而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有

发生任何问题,你一走,错误又发作了。 常见的内存错误及其对策如下:
       * 内存分配未成功,却使用了它。

  编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查

指针是否为NULL。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。

  * 内存分配虽然成功,但是尚未初始化就引用它。

  犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值

错误(例如数组)。 内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不

可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

  * 内存分配成功并且已经初始化,但操作越过了内存的边界。

  例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞

错,导致数组操作越界。

  * 忘记了释放内存,造成内存泄露。

  含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次

程序突然死掉,系统出现提示:内存耗尽。

  动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误

(new/delete同理)。

  * 释放了内存却继续使用它。
 
  有三种情况:

  (1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新

设计数据结构,从根本上解决对象管理的混乱局面。

  (2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函

数体结束时被自动销毁。

  (3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

  【规则1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存

  【规则2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。

  【规则3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。

  【规则4】动态内存的申请与释放必须配对,防止内存泄漏。

  【规则5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。

二. 详解new,malloc,GlobalAlloc
    
 1.  new

new和delete运算符用于动态分配和撤销内存的运算符

new用法:

1>     开辟单变量地址空间

1)new int;  //开辟一个存放数组的存储空间,返回一个指向该存储空间的地址.int *a = new

int 即为将一个int类型的地址赋值给整型指针a.

2)int *a = new int(5) 作用同上,但是同时将整数赋值为5

2>    开辟数组空间

一维: int *a = new int[100];开辟一个大小为100的整型数组空间

一般用法: new 类型 [初值]

delete用法:

1> int *a = new int;

delete a;   //释放单个int的空间

2>int *a = new int[5];

delete [] a; //释放int数组空间

要访问new所开辟的结构体空间,无法直接通过变量名进行,只能通过赋值的指针进行访问.

用new和delete可以动态开辟,撤销地址空间.在编程序时,若用完一个变量(一般是暂时存储的数组),

下次需要再用,但却又想省去重新初始化的功夫,可以在每次开始使用时开辟一个空间,在用完后撤销它.

2.  malloc
  原型:extern void *malloc(unsigned int num_bytes); 
  用法:#i nclude <malloc.h>或#i nclude <stdlib.h> 
  功能:分配长度为num_bytes字节的内存块 
  说明:如果分配成功则返回指向被分配内存的指针,否则返回空指针NULL。 
  当内存不再使用时,应使用free()函数将内存块释放。 
  malloc的语法是:指针名=(数据类型*)malloc(长度),(数据类型*)表示指针. 
说明:malloc 向系统申请分配指定size个字节的内存空间。返回类型是 void* 类型。void* 表示未确定类型

的指针。C,C++规定,void* 类型可以强制转换为任何其它类型的指针。

malloc()函数的工作机制 
  malloc函数的实质体现在,它有一个将可用的内存块连接为一个长长的列表的所谓空闲链表。调用malloc

函数时,它沿连接表寻找一个大到足以满足用户请求所需要的内存块。然后,将该内存块一分为二(一块的大

小与用户请求的大小相等,另一块的大小就是剩下的字节)。接下来,将分配给用户的那块内存传给用户,并

将剩下的那块(如果有的话)返回到连接表上。调用free函数时,它将用户释放的内存块连接到空闲链上。到

最后,空闲链会被切成很多的小内存片段,如果这时用户申请一个大的内存片段,那么空闲链上可能没有可以

满足用户要求的片段了。于是,malloc函数请求延时,并开始在空闲链上翻箱倒柜地检查各内存片段,对它们

进行整理,将相邻的小空闲块合并成较大的内存块。
 
和new的不同
从函数声明上可以看出。malloc 和 new 至少有两个不同: new 返回指定类型的指针,并且可以自动计算所需

要大小。比如:
int *p;
p = new int; //返回类型为int* 类型(整数型指针),分配大小为 sizeof(int);
或:
int* parr;
parr = new int [100]; //返回类型为 int* 类型(整数型指针),分配大小为 sizeof(int) * 100;
而 malloc 则必须由我们计算要字节数,并且在返回后强行转换为实际类型的指针。
int* p;
p = (int *) malloc (sizeof(int));
第一、malloc 函数返回的是 void * 类型,如果你写成:p = malloc (sizeof(int)); 则程序无法通过编译,

报错:“不能将 void* 赋值给 int * 类型变量”。所以必须通过 (int *) 来将强制转换。
第二、函数的实参为 sizeof(int) ,用于指明一个整型数据需要的大小。如果你写成:
int* p = (int *) malloc (1);
代码也能通过编译,但事实上只分配了1个字节大小的内存空间,当你往里头存入一个整数,就会有3个字节无

家可归,而直接“住进邻居家”!造成的结果是后面的内存中原有数据内容全部被清空。

3.  GlobalAlloc
 
   VC中关于GlobalAlloc,GlobalLock,GlobalUnLock

调用GlobalAlloc函数分配一块内存,该函数会返回分配的内存句柄。 
调用GlobalLock函数锁定内存块,该函数接受一个内存句柄作为参数,然后返回一个指向被锁定的内存块的指

针。 您可以用该指针来读写内存。 
调用GlobalUnlock函数来解锁先前被锁定的内存,该函数使得指向内存块的指针无效。 
调用GlobalFree函数来释放内存块。您必须传给该函数一个内存句柄。
  
GlobalAlloc 
说明 
分配一个全局内存块 
返回值 
Long,返回全局内存句柄。零表示失败。会设置GetLastError 
参数表 
参数 类型及说明 
wFlags Long,对分配的内存类型进行定义的常数标志,如下所示: 
             GMEM_FIXED 分配一个固定内存块 
             GMEM_MOVEABLE 分配一个可移动内存块 
             GMEM_DISCARDABLE 分配一个可丢弃内存块 
             GMEM_NOCOMPACT 堆在这个函数调用期间不进行累积 
             GMEM_NODISCARD 函数调用期间不丢弃任何内存块 
             GMEM_ZEROINIT 新分配的内存块全部初始化成零 
dwBytes Long,要分配的字符数

GlobalLock  
函数功能描述:锁定一个全局的内存对象,返回指向该对象的第一个字节的指针
函数原型:
LPVOID GlobalLock( HGLOBAL hMem )
参数:
hMem:全局内存对象的句柄。这个句柄是通过GlobalAlloc或GlobalReAlloc来得到的
返回值:
调用成功,返回指向该对象的第一个字节的指针
调用失败,返回NULL,可以用GetLastError来获得出错信息
注意:
调用过GlobalLock锁定一块内存区后,一定要调用GlobalUnlock来解锁
  
  GlobalUnlock
函数功能描述:解除被锁定的全局内存对象
函数原型:BOOL GlobalUnlock( HGLOBAL hMem );
参数:hMem:全局内存对象的句柄
返回值:
非零值,指定的内存对象仍处于被锁定状态
0,函数执行出错,可以用GetLastError来获得出错信息,如果返回NO_ERROR,则表示内存对象已经解锁了
注意:    这个函数实际上是将内存对象的锁定计数器减一,如果计数器不为0,则表示执行过多个GlobalLock

函数来对这个内存对象加锁,需要对应数目的GlobalUnlock函数来解锁。如果通过GetLastError函数返回错误

码为ERROR_NOT_LOCKED,则表示未加锁或已经解锁。

示例:
// Malloc memory
hMem = GlobalAlloc(GMEM_MOVEABLE | GMEM_DDESHARE, nSize);
// Lock memory
pMem = (BYTE *) GlobalLock(hMem);
..................
// Unlock memory
GlobalUnlock(hMem);
GlobalFree(hMem);

三 总结

灵活自由是C/C++语言的一大特色,而这也为C/C++程序员出了一个难题。当程序越来越复杂时,内存的管理也

会变得越加复杂,稍有不慎就会出现内存问 题。内存泄漏是最常见的内存问题之一。内存泄漏如果不是很严重

,在短时间内对程序不会有太大的影响,这也使得内存泄漏问题有很强的隐蔽性,不容易被发现。 然而不管内

存泄漏多么轻微,当程序长时间运行时,其破坏力是惊人的,从性能下降到内存耗尽,甚至会影响到其他程序

的正常运行。另外内存问题的一个共同特点 是,内存问题本身并不会有很明显的现象,当有异常现象出现时已

时过境迁,其现场已非出现问题时的现场了,这给调试内存问题带来了很大的难度。

下载Windows Debug 工具, http://www.microsoft.com/whdc/devtools/debugging/default.mspx
安装后,使用其中的gflags.exe工具打开PageHeap,
gflags -p /enable MainD.exe /full
重新使用VS用调试方式运行,很快就找到了出错位置,因为在某个静态函数中笔误导致

在编写稳定的服务器程序时,这个工具尤为有用。

//------------------------------------------------------------------------------------------------

第二部分 数组的动态分配及实例

//------------------------------------------------------------------------------------------------

动态分配二维数组的一般方法是这样:假设数组存的数据类型是int
int **p=NULL; 
p=new int*[nWidth];
    if (!p){
        return NULL;
    }
    for (int j=0;j<nWidth;j++){
        p[j]=new int[nHeight];
        if (!p[j]){
            return NULL;
        }
    }
这段代码浅显易懂,先分配第1维,在循环分配第2维。假设二维数组是3×2的,每一句运行完后的内存情况如图所示(方格表示内存,xx表示随机数。下面是内存地址。当然,这个地址是个示意,事实不会分配到那的。):
第一句完后分配了3个内存单元

循环分配后,注意下面3段内存是不连续的。这样用下表p[n][m]操作数组没问题,如果整块内存操作就会有问题了。

原意是想把下面的3块6个内存单元清0,可是事与愿违,把从p开始后面6个内存单元清0了,p[]不能用了。p后面只有3个已分配的内存单元,却要操作6个,另外3个是未知区域。清了后面虚线的3块未知区域,这就很危险了,可能导致程序崩溃。
这样分配的内存需要循环释放。

对这个方法有一改进,如下:

int **p=NULL; 
   p=new int *[nWidth];
if (!p){
        return NULL;
    }
    p[0]=new int[nWidth*nHeight];
if (!p[0]){
   delete[] p;
        return NULL;
    }
    ZeroMemory(p[0],nWidth*nHeight*sizeof(int));
    for (int i=1;i<nWidth;i++){
        p[i]=p[i-1]+nHeight;
    }

这段代码解决了分配的空间不连续的问题。每一句运行完后的内存情况如图所示:

第一句和上面一样。

这6个内存单元是一次分配的,所以连续。

这个二维数组的数据首地址是p[0],p是第2维的索引首地址。所以如果要对二维数组进行整体的内存(缓冲区 buffer)操作,要以p[0]为操作对象的首地址。

到此,索引与对应的数据地址关联上了。这个二维数组既可以通过下表p[][]来操作,又可以操作缓冲区。操作缓冲区的函数比如memcpy,cfile的writehuge和readhuge使用起来很方便,省去了2次循环的麻烦。

至于释放,不必循环释放。因为new了2次,所以只需delete2次就行了:
if(!p){
   return;
}
    delete []p[0];
    p[0]=NULL;
    delete[] p;
    p=NULL;


(可参考 http://hi.baidu.com/jiaon/item/52017c5a145debcfd2e10c52)

二  实例

    1. <span style="font-size:14px;">// malloc2d.cpp : Defines the entry point for the console application.
    2. //
    3. #include "stdafx.h"
    4. #include <iostream>
    5. #include <stdlib.h>
    6. #include <string.h>
    7. using namespace std;
    8. //第一种方法,参考http://blog.csdn.net/blind20/article/details/5214507,分配连续空间
    9. void **malloc2d(int row,int col,int size)
    10. {
    11. void **arr;
    12. int indexsize=sizeof(void*)*row;//空出indexsize大小的空间用作? void*为什么不行?
    13. int totalsize=size*row*col;
    14. arr=(void**)malloc(indexsize+totalsize);
    15. if(arr!=NULL)
    16. {
    17. unsigned char *head;//博客中是void *head版本,但编译都通过不了,改成unsigned char* 后编译通过,但不明白运行结果为什么不对
    18. head=(unsigned char *)arr+indexsize;
    19. memset(arr,0,indexsize+totalsize);
    20. for(int i=0;i<row;i++)
    21. arr[i]=head+size*i*col;
    22. }
    23. return arr;
    24. }
    25. void free2d(void **arr)
    26. {
    27. if(arr!=NULL)
    28. free(arr);
    29. }
    30. //第二中方法,分配连续空间,C++的实现版,
    31. template <typename T>
    32. T **darray_new(int row, int col)
    33. {
    34. int size=sizeof(T);
    35. void **arr=(void **) malloc(sizeof(void *) * row + size * row * col);
    36. if (arr != NULL)
    37. {
    38. unsigned char * head;
    39. head=(unsigned char *) arr + sizeof(void *) * row;
    40. for (int i=0; i<row; ++i)
    41. {
    42. arr[i]= head + size * i * col;
    43. for (int j=0; j<col; ++j)
    44. new (head + size * (i * col + j)) T;//这一句比较有意思,想一想为什么?
    45. }
    46. }
    47. return (T**) arr;
    48. }
    49. template <typename T>
    50. void darray_free(T **arr, int row, int col)//注意要一个一个delete了,蛋疼,不过对于自定义的数据类型,很有必要
    51. {
    52. for (int i=0; i<row; ++i)
    53. for (int j=0; j<col; ++j)
    54. arr[i][j].~T();//这是什么玩意儿?!模板析构?因为使用了new?所以用析构函数的delete?
    55. if (arr != NULL)
    56. free((void **)arr);
    57. }
    58. int _tmain(int argc, _TCHAR* argv[])
    59. {
    60. //一维数组动态分配
    61. //int n;
    62. //cin>>n;
    63. ////int *p=new int[n];//一维数组动态分配方法一
    64. //int *p=(int*)malloc(n*sizeof(int));//一维数组动态分配方法二
    65. //for(int i=0;i<n;i++)
    66. //  cin>>p[i];
    67. //cout<<endl;
    68. //for(int i=0;i<n;i++)
    69. //  cout<<p[i]<<" ";
    70. //二维变长数组的动态分配,本人喜欢这种方法,虽然空间不连续,但同样可以进行p[i][j]的寻址,为什么博客中特意写上面介绍的函数来实现还没找到太好的理由
    71. //int n;
    72. //cin>>n;
    73. //int *p[2];
    74. //p[0]=new int[n];
    75. //p[1]=new int[n+1];
    76. //for(int i=0;i<n;i++)
    77. //  cin>>p[0][i];
    78. //cout<<&p[0]<<"      "<<&p[1]<<endl;//p[0],p[1]是连续的
    79. //cout<<&p[0]<<"     "<<&p[0]
      [0]<<"     "<<&p[0][1]<<endl;//p[0]!=p[0][0],但p[0]
      [0],p[0][1]是连续的
    80. ////C版本的,分配连续空间
    81. //int**m=(int**)malloc2d(5,5,sizeof(int));
    82. //int i,j;
    83. //for( i=0;i<5;i++)                           //void* 泛型指针,有待剖析
    84. //  for( j=0;j<5;j++)
    85. //      m[i][j]=0;
    86. //for( i=0;i<5;i++)
    87. //{
    88. //  for( j=0;j<5;j++)
    89. //      cout<<m[i][j]<<" ";
    90. //  cout<<endl;
    91. //}
    92. //free2d((void**)m);
    93. int** m=darray_new<int>(5,5);//注意模板函数怎么实现的 <int>!
    94. int i,j;
    95. for( i=0;i<5;i++)
    96. for( j=0;j<5;j++)
    97. m[i][j]=1;
    98. for( i=0;i<5;i++)
    99. {
    100. for( j=0;j<5;j++)
    101. cout<<m[i][j]<<" ";
    102. cout<<endl;
    103. }
    104. darray_free(m,5,5);
    105. return 0;
    106. }
    107. </span>
时间: 2024-10-24 20:04:53

内存分配问题的相关文章

关于const和define的内存分配问题的总结

关于const和define的内存分配问题 const与#define宏定义的区别----C语言深度剖析 1,  const定义的只读变量在程序运行过程中只有一份拷贝(因为它是全局的只读变量,存放在静态区),而#define定义的宏常量在内存中有若干个拷贝. 2,  #define宏是在预编译阶段进行替换,而const修饰的只读变量是在编译的时候确定其值. 3,  #define宏没有类型,而const修饰的只读变量具有特定的类型. 总结:const节省了空间,避免了不必要的内存分配,同时提高了

java的参数传递与内存分配问题

本文可作为北京尚学堂java课程的学习笔记. 看下面这段代码. class BirthDate { private int day; private int month; private int year; public BirthDate(int d, int m, int y) { day = d; month = m; year = y; } //省略get set public void display() { System.out.println (day + " - " +

C语言内存分配问题简单理解

内存分配方式有几种?静态存储区 栈 堆 的内存分配1,从静态存储区域分配内存.程序编译的时候内存已经分配好了,并且在程序的整个运行期间都存在,例如全局变量.2,在栈上创建.在执行函数时,函数内局部变量的存储单元可以在栈上创建,函数结束时这些存储单元自动被释放.处理器的指定集中有关于栈内存的分配运算,因此效率比较高,但是分配的内存容量有限.3,在堆上分配内存,亦称动态内存分配,程序在运行的时候用malloc函数或new运算符申请任意大小的内存,程序员要用free函数或delete运算符释放内存.动

1214.1——内存分配问题

自动分配内存:当定义为基本类型的变量的时候,系统会为这个变量自动分配内存,这个内存在堆上.当作用域结 束,系统将会自动将这个内存回收. 动态分配内存:开发人员自己向系统申请的内存空间,申请的内存位于栈上,当作用域结束之后,系统是不会自动   回收内存的.这个内存必须由开发人员自己去释放.如果不释放,就内存泄露了. 1. 什么时候需要动态分配内存. 程序运行过程中,需要程序保存/记录相应的数据,但是又没有提前准备好内存,那么就需要临时动态分配内存. 使用函数: void *malloc(size_

经典String str = new String(&quot;abc&quot;)内存分配问题

出自:http://blog.csdn.net/ycwload/article/details/2650059 今天要找和存储管理相关的一些知识,网上搜了半天也没有找到完善的(30%的程度都不到),没办法,下载了曾经大学里的一本pdf格式的教学书,看了整整一天才算是搞明白存储管理中的一部分知识.曾几何时,我曾写过大学无用的一些小论题,觉得大学里教的东西不切合实际,理论化偏严重,总认为用理论教出来的人,总是说着牛逼,做事掉渣的人.所以,在大学里,我的学习只能说是应付考试,太多的东西都没有去深入了解

C语言中内存分配问题:

推荐: C语言中内存分配 Linux size命令和C程序的存储空间布局 本大神感觉,上面的链接的内容,已经很好的说明了: 总结一下: 对于一个可执行文件,在linux下可以使用 size命令列出目标文件各部分占的字节数:分为:text段.data段与bss段:(参考:Linux size命令和C程序的存储空间布局) 对于一个可执行文件,它的存储空间包括: 1. 代码区(text segment).存放CPU执行的机器指令(machine instructions) 2. 全局初始化数据区/静态

程序下载到单片机中的内存分配问题

1.函数分配到Flash中的代码段 2.已初始化的全局变量:   uint8_t G_Initialized_Variable = 10;     G_Initialized_Variable存在SRAMA当中的已初始化段(.data),10存放在Flash当中的只读段(.rodata) 3.未初始化的全局变量:     uint8_t G_Uninitialized_Variable = 0;     G_Uninitialized_Variable存在SRAMA当中的未初始化段(.bss)

union、enum、struct 内存分配问题

代码和运行结果一看就懂了. union un { int m; float c; double p; long k; unsigned int q; long long g; __int64 o; }; enum em { a,b,c,d }; struct MyStruct { char a;//4 float c;//4 char b;//4 double p;//8 char m1; int k;//8 char kk; }; struct MyStruct1 { char a;//4 }

SQLite剖析之动态内存分配

SQLite通过动态内存分配来获取各种对象(例如数据库连接和SQL预处理语句)所需内存.建立数据库文件的内存Cache.以及保存查询结果.我们做了很多努力来让SQLite的动态内存分配子系统可靠.可预测.健壮并且高效.本文概述SQLite的动态内存分配,软件开发人员在使用SQLite时可以据此获得最佳性能. 1.特性    SQLite内核和它的内存分配子系统提供以下特性:    (1)对内存分配失败的健壮处理.如果一个内存分配请求失败(即malloc()或realloc()返回NULL),SQ