2的m次方 内存对齐

在存储的时候,为了提高效率,一般都会让偏移量落在2的m次方的位置上,而且常有向上取整和向下取整两种需求。
向下取整
PALIGN_DOWN(x,align)  (x & (- align))
 
这样做为什么可以,因为align 取反 还是自己,只是高位全变成1了,然后再和原来的数&运算,此时不对齐多出来的1都被清0了。
PALIGN_UP(x,align) (-(-x) & (-align))
原理也比较容易推断,将x变成负数,那么对-x 向下取反,得到的数是向下取反的负数,但是再加一个负号,负负得正,获得了一个更大的整数
实现了向上取整。
相当于 PALIGN_UP(x,align) =====> -PALIGN_DOWN(-x,align)

PALIGN_DOWN向下取整例子:

4二进制:

0000 0100

1111 1100

如果x是3, 011,和-align相与后为0

如果x是5,101,相与后是4.

一篇文章:

内存对齐算法

字节对齐是在分配内存时需要考虑的问题,两个小算法:

(1)最容易想到的算法:

 

  1. unsigned int calc_align(unsigned int n,unsigned align)
  2. {
  3. if ( n / align * align == n)
  4. return n;
  5. return  (n / align + 1) * align;
  6. }

(2)更好的算法:

  1. unsigned int calc_align(unsigned int n,unsigned align)
  2. {
  3. return ((n + align - 1) & (~(align - 1)));
  4. }

对于2算法原理如下:

2字节对齐,要求地址位为2,4,6,8...,要求二进制位最后一位为0(2的1次方)

4字节对齐,要求地址位为4,8,12,16...,要求二进制位最后两位为0(2的2次方)

8字节对齐,要求地址位为8,16,24,32...,要求二进制位最后三位为0(2的3次方)

16字节对齐,要求地址位为16,32,48,64...,要求二进制位最后四位为0(2的4次方)

...

由此可见,我们只要对数据补齐对齐所需最少数据,然后将补齐位置0就可以实现对齐计算。

(1)(align-1),表示对齐所需的对齐位,如:2字节对齐为1,4字节为11,8字节为111,16字节为1111...

(2)(x+(align-1)),表示x补齐对齐所需数据

(3)&~(align-1),表示去除由于补齐造成的多余数据

(4) (x+(align-1))&~(align-1),表示对齐后的数据

举个例子:如8字节对齐。起始地始是6

6 + (8 - 1)=0000 0110 + 0000 0111 = 0000 1101

0000 1101 & ~(0000 0111) = 0000 1000  //去除由于补齐造成的多余数据

时间: 2024-08-08 22:07:28

2的m次方 内存对齐的相关文章

关于内存对齐的那些事

Wrote by mutouyun. (http://darkc.at/about-data-structure-alignment/) 1. 内存对齐(Data Structure Alignment)是什么 内存对齐,或者说字节对齐,是一个数据类型所能存放的内存地址的属性(Alignment is a property of a memory address). 这个属性是一个无符号整数,并且这个整数必须是2的N次方(1.2.4.8.--.1024.--). 当我们说,一个数据类型的内存对齐

struct内存对齐1:gcc与VC的差别

struct内存对齐:gcc与VC的差别 内存对齐是编译器为了便于CPU快速访问而采用的一项技术,对于不同的编译器有不同的处理方法. Win32平台下的微软VC编译器在默认情况下采用如下的对齐规则: 任何基本数据类型T的对齐模数就是T的大小,即sizeof(T).比如对于double类型(8字节),就要求该类型数据的地址总是8的倍数,而char类型数据(1字节)则可以从任何一个地址开始.Linux下的GCC奉行的是另外一套规则:任何2字节大小(包括单字节吗?)的数据类型(比如short)的对齐模

内存对齐与自定义类型

一.内存对齐 (一).为什么会有内存对齐? 1.为了提高程序的性能,数据结构(尤其是栈)应该尽可能的在自然边界上对齐.原因是为了访问未对齐的内存,处理器需要进行两次访问,而访问对齐的内存,只需要一次就够了.这种方式称作"以空间换时间"在很多对时间复杂度有要求问题中,会采用这种方法. 2.内存对齐能够增加程序的可移植性,因为不是所有的平台都能随意的访问内存,有些平台只能在特定的地址处处读取内存. 一般情况下内存对齐是编译器的事情,我们不需要考虑,但有些问题还是需要考虑的,毕竟c/c++是

内存对齐,大端字节   序小端字节序验证

空结构体:对于空结构体,就是只有结构体这个模子,但里面却没有元素的结构体. 例: typedef struct student { }std: 这种空结构体的模子占一个字节,sizeof(std)=1. 柔性数组: 结构体中最后一个元素可以是一个大小未知的数组,称作柔性数组成员,规定柔性数组前面至少有一个元素. typedef struct student { int i; char arr[];     //柔性数组成员 }std: sizeof(std)=4; sizeof求取该结构体大小是

20160402_C++中的内存对齐

原题: 有一个如下的结构体: struct A{  long a1;  short a2;  int a3;  int *a4; }; 请问在64位编译器下用sizeof(struct A)计算出的大小是多少? 答案:24 -------------------------------------------------------------------------------- 本题知识点:C/C++ 预备知识:基本类型占用字节 在32位操作系统和64位操作系统上,基本数据类型分别占多少字节

内存对齐

有虚函数的话就有虚表,虚表保存虚函数地址,一个地址占用的长度根据编译器不同有可能不同,vs里面是8个字节,在devc++里面是4个字节.类和结构体的对齐方式相同,有两条规则1.数据成员对齐规则:结构(struct)(或联合(union))的数据成员,第一个数据成员放在offset为0的地方,以后每个数据成员的对齐按照#pragma pack指定的数值和这个数据成员自身长度中,比较小的那个进行.2.结构(或联合)的整体对齐规则:在数据成员完成各自对齐之后,结构(或联合)本身也要进行对齐,对齐将按照

内存对齐和大小端

一.内存对齐的原因 根本原因:cpu是根据内存访问粒度(memory access granularity,下文简写成MAG)来读取内存,MAG就是cpu一次内存访问操作的数据量,具体数值依赖于特定的平台,一般是2byte.4byte.8byte. 内存对齐:更够减少内存读取次数(相对于内存不对齐),为了访问未对齐的内存,处理器需要作两次内存访问:而对齐的内存访问仅需要一次访问. 二.内存对齐的步骤 每个平台上的编译器都有自己的默认“对齐系数”.同时,我们也可以通过预编译命令#pragma pa

c++编程思想(三)--c++中c 续,重点sizeof和内存对齐

之前理论性的太多,下面就是代码及理论结合了 1.sizeof()是一个独立运算符,并不是函数,可以让我们知道任何变量字节数,可以顺带学一下struct,union,内存对齐 内存对齐:为了机器指令快速指向地址值,编译器内部实际上会内存对齐,怎么理解了,以struct为例 先讲一下各个变量类型内存大小 所以struct理论上是:1+2+4+4+4+8+8 = 31,但是实际是 实际大小是32(1+2+1+4)+(4+4)+8+8 然后再把int和short位置调换 实际大小是40   (1+3)+

c++中类对象的内存对齐

很多C++书籍中都介绍过,一个Class对象需要占用多大的内存空间.最权威的结论是: *非静态成员变量总合.(not static) *加上编译器为了CPU计算,作出的数据对齐处理.(c语言中面试中经常会碰到内存对齐的问题) *加上为了支持虚函数(virtual function),产生的额外负担. 下面给出几个程序来看一下: #include <iostream> #include <cstdio> #include <string> using namespace