《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅴ

命题Q。对于一个含有N个元素的基于堆叠优先队列,插入元素操作只需要不超过(lgN + 1)次比较,删除最大元素的操作需要不超过2lgN次比较。

证明。由命题P可知,两种操作都需要在根节点和堆底之间移动元素,而路径的长度不超过lgN。对于路径上的每个节点,删除最大元素需要两次比比较(除了堆底元素),一次用来找出较大的子节点,一次用来确定该子节点是否需要上浮。

对于需要大量混杂的插入和删除最大元素操作的典型应用来说,命题Q意味着一个重要的性能突破(详见优先队列增长数量级表)。使用有序或是无序数组的优先队列的初级实现总是需要线性时间来完成其中一种操作,但基于堆底实现则能够抱枕在对数时间内完成他们。这种差别使得我们能够解决以前无法解决的问题。

2.4.4.3 多叉堆

基于用数组表示的完全三叉树构造堆并修改相应的代码并不困难。对于数组中1 至N 的N个元素,位置k的结点大于等于位于3k - 1、3k和3k + 1的结点,小于等于位于[(k + 1) / 3 (d)]的结点。甚至对于给定的d,将其修改为任意的d叉树也并不困难。我们需要在树高(logaN)和在每个节点的d个子节点找到最大者的代价之间找到折中,这取决于实现的细节以及不同操作的预期相对频繁程度。堆上的优先队列操作如右图。

2.4.4.4 调整数组大小

我们可以添加一个没有参数的构造函数,在insert()中添加将数组长度加倍的代码,在delMax()中添加将数组长度减半的代码,就像栈那样。这样,算法的用例就无需管组各种队列大小的限制。当有限队列的数组大小可以跳帧、队列长度可以是任意值时,命题Q指出的对数时间复杂度上限就只是针对一般性的队列长度N而言了。

2.4.4.5 元素的不可变性

有限队列存储了用例创建的对象,但同时假设用例代码不会改变他们(改变他们就可能打破堆的有序性)。我们可以将这个假设为强制条件,但程序员通常不会这么做,因为增加代码的复杂性会降低性能。

2.4.4.6 索引优先队列

在很多应用中,允许用例引用已经进入有限队列中的元素是有必要的。做到这一点的一种简单方法是用例已经有了总量为N的多个元素,而且可能还同时使用了多个(平行)数组(Parallel Array)来存储这些元素的信息。此时,其他无关的用例代码可能已经在使用一个整数索引来引用这些元素了。这些考虑引导我们设计了下表。

理解这种数据结构的一个较好方法是将它看成一个能够快速访问其中最小元素的数组。事实上它还要更好——它能够快速访问数组的一个特定子集中的最小元素(指所有被插入的元素)。换句话说,可以将名为pq的IndexMinPQ优先队列看做数组pq[0..N - 1]中的一部分元素的代表。将pq.insert(k, item)看做将k加入这个子集并使pq[k] = item, pq.change(k, item)则代表令pq[k] = item。这两种操作没有改变其他操作所依赖的数据结构,其中最重要的就是delMin()(删除最小元素并返回它的索引)和change()(改变数据结构中的某个元素的索引——即pq[i] = item)。这些操作在许多应用中都很重要并且依赖于对元素的引用(索引)。一般来说,当堆发生变化时,我们会用下沉(元素减小时)或上浮(元素变大时)操作来恢复堆的有序性。在这些操作中,我们可以用索引查找元素。能够定位堆中的任意元素也使我们能够在API中加入一个delete()操作。

命题Q(续)。在一个大小为N的索引优先队列中,插入元素(insert)、改变优先级(change)、删除(delete)和删除最大小元素(remove the minimum)操作所需的比较次数和logN成正比(如后表)

证明。已知堆中所有路径最长即为~lgN,从代码中很容易得到这个结论。

操作 比较次数的增长数量级
insert() logN
change() logN
contains() 1
delete() logN
min() 1
minIndex() 1
delMin
logN

这段讨论针对的是找好粗最小元素的队列;以下是《alg4》书中实现的一个找出最大元素的版本IndexMaxPQ。

  1 import java.util.Iterator;
  2 import java.util.NoSuchElementException;
  3
  4 /**
  5  *  The <tt>IndexMaxPQ</tt> class represents an indexed priority queue of generic keys.
  6  *  It supports the usual <em>insert</em> and <em>delete-the-maximum</em>
  7  *  operations, along with <em>delete</em> and <em>change-the-key</em>
  8  *  methods. In order to let the client refer to items on the priority queue,
  9  *  an integer between 0 and NMAX-1 is associated with each key&mdash;the client
 10  *  uses this integer to specify which key to delete or change.
 11  *  It also supports methods for peeking at a maximum key,
 12  *  testing if the priority queue is empty, and iterating through
 13  *  the keys.
 14  *  <p>
 15  *  This implementation uses a binary heap along with an array to associate
 16  *  keys with integers in the given range.
 17  *  The <em>insert</em>, <em>delete-the-maximum</em>, <em>delete</em>,
 18  *  <em>change-key</em>, <em>decrease-key</em>, and <em>increase-key</em>
 19  *  operations take logarithmic time.
 20  *  The <em>is-empty</em>, <em>size</em>, <em>max-index</em>, <em>max-key</em>, and <em>key-of</em>
 21  *  operations take constant time.
 22  *  Construction takes time proportional to the specified capacity.
 23  *  <p>
 24  *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/24pq">Section 2.4</a> of
 25  *  <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
 26  *
 27  *  @author Robert Sedgewick
 28  *  @author Kevin Wayne
 29  */
 30 public class IndexMaxPQ<Key extends Comparable<Key>> implements Iterable<Integer> {
 31     private int N;           // number of elements on PQ
 32     private int[] pq;        // binary heap using 1-based indexing
 33     private int[] qp;        // inverse of pq - qp[pq[i]] = pq[qp[i]] = i
 34     private Key[] keys;      // keys[i] = priority of i
 35
 36     /**
 37      * Initializes an empty indexed priority queue with indices between 0 and NMAX-1.
 38      * @param NMAX the keys on the priority queue are index from 0 to NMAX-1
 39      * @throws java.lang.IllegalArgumentException if NMAX < 0
 40      */
 41     public IndexMaxPQ(int NMAX) {
 42         keys = (Key[]) new Comparable[NMAX + 1];    // make this of length NMAX??
 43         pq   = new int[NMAX + 1];
 44         qp   = new int[NMAX + 1];                   // make this of length NMAX??
 45         for (int i = 0; i <= NMAX; i++) qp[i] = -1;
 46     }
 47
 48     /**
 49      * Is the priority queue empty?
 50      * @return true if the priority queue is empty; false otherwise
 51      */
 52     public boolean isEmpty() { return N == 0; }
 53
 54     /**
 55      * Is i an index on the priority queue?
 56      * @param i an index
 57      * @throws java.lang.IndexOutOfBoundsException unless (0 &le; i < NMAX)
 58      */
 59     public boolean contains(int i) {
 60         return qp[i] != -1;
 61     }
 62
 63     /**
 64      * Returns the number of keys on the priority queue.
 65      * @return the number of keys on the priority queue
 66      */
 67     public int size() {
 68         return N;
 69     }
 70
 71    /**
 72      * Associate key with index i.
 73      * @param i an index
 74      * @param key the key to associate with index i
 75      * @throws java.lang.IndexOutOfBoundsException unless 0 &le; i < NMAX
 76      * @throws java.util.IllegalArgumentException if there already is an item associated with index i
 77      */
 78     public void insert(int i, Key key) {
 79         if (contains(i)) throw new IllegalArgumentException("index is already in the priority queue");
 80         N++;
 81         qp[i] = N;
 82         pq[N] = i;
 83         keys[i] = key;
 84         swim(N);
 85     }
 86
 87     /**
 88      * Returns an index associated with a maximum key.
 89      * @return an index associated with a maximum key
 90      * @throws java.util.NoSuchElementException if priority queue is empty
 91      */
 92     public int maxIndex() {
 93         if (N == 0) throw new NoSuchElementException("Priority queue underflow");
 94         return pq[1];
 95     }
 96
 97     /**
 98      * Return a maximum key.
 99      * @return a maximum key
100      * @throws java.util.NoSuchElementException if priority queue is empty
101      */
102     public Key maxKey() {
103         if (N == 0) throw new NoSuchElementException("Priority queue underflow");
104         return keys[pq[1]];
105     }
106
107     /**
108      * Removes a maximum key and returns its associated index.
109      * @return an index associated with a maximum key
110      * @throws java.util.NoSuchElementException if priority queue is empty
111      */
112     public int delMax() {
113         if (N == 0) throw new NoSuchElementException("Priority queue underflow");
114         int min = pq[1];
115         exch(1, N--);
116         sink(1);
117         qp[min] = -1;            // delete
118         keys[pq[N+1]] = null;    // to help with garbage collection
119         pq[N+1] = -1;            // not needed
120         return min;
121     }
122
123     /**
124      * Returns the key associated with index i.
125      * @param i the index of the key to return
126      * @return the key associated with index i
127      * @throws java.lang.IndexOutOfBoundsException unless 0 &le; i < NMAX
128      * @throws java.util.NoSuchElementException no key is associated with index i
129      */
130     public Key keyOf(int i) {
131         if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
132         else return keys[i];
133     }
134
135    /**
136      * Change the key associated with index i to the specified value.
137      * @param i the index of the key to change
138      * @param key change the key assocated with index i to this key
139      * @throws java.lang.IndexOutOfBoundsException unless 0 &le; i < NMAX
140      * @deprecated Replaced by changeKey()
141      */
142     @Deprecated public void change(int i, Key key) {
143         changeKey(i, key);
144     }
145
146     /**
147      * Change the key associated with index i to the specified value.
148      * @param i the index of the key to change
149      * @param key change the key assocated with index i to this key
150      * @throws java.lang.IndexOutOfBoundsException unless 0 &le; i < NMAX
151      */
152     public void changeKey(int i, Key key) {
153         if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
154         keys[i] = key;
155         swim(qp[i]);
156         sink(qp[i]);
157     }
158
159
160     /**
161      * Increase the key associated with index i to the specified value.
162      * @param i the index of the key to increase
163      * @param key increase the key assocated with index i to this key
164      * @throws java.lang.IndexOutOfBoundsException unless 0 &le; i < NMAX
165      * @throws java.lang.IllegalArgumentException if key &le; key associated with index i
166      * @throws java.util.NoSuchElementException no key is associated with index i
167      */
168     public void increaseKey(int i, Key key) {
169         if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
170         if (keys[i].compareTo(key) >= 0) throw new IllegalArgumentException("Calling increaseKey() with given argument would not strictly increase the key");
171
172
173         keys[i] = key;
174         swim(qp[i]);
175     }
176
177     /**
178      * Decrease the key associated with index i to the specified value.
179      * @param i the index of the key to decrease
180      * @param key decrease the key assocated with index i to this key
181      * @throws java.lang.IndexOutOfBoundsException unless 0 &le; i < NMAX
182      * @throws java.lang.IllegalArgumentException if key &ge; key associated with index i
183      * @throws java.util.NoSuchElementException no key is associated with index i
184      */
185     public void decreaseKey(int i, Key key) {
186         if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
187         if (keys[i].compareTo(key) <= 0) throw new IllegalArgumentException("Calling decreaseKey() with given argument would not strictly decrease the key");
188
189         keys[i] = key;
190         sink(qp[i]);
191     }
192
193     /**
194      * Remove the key associated with index i.
195      * @param i the index of the key to remove
196      * @throws java.lang.IndexOutOfBoundsException unless 0 &le; i < NMAX
197      * @throws java.util.NoSuchElementException no key is associated with index i
198      */
199     public void delete(int i) {
200         if (!contains(i)) throw new NoSuchElementException("index is not in the priority queue");
201         int index = qp[i];
202         exch(index, N--);
203         swim(index);
204         sink(index);
205         keys[i] = null;
206         qp[i] = -1;
207     }
208
209
210    /**************************************************************
211     * General helper functions
212     **************************************************************/
213     private boolean less(int i, int j) {
214         return keys[pq[i]].compareTo(keys[pq[j]]) < 0;
215     }
216
217     private void exch(int i, int j) {
218         int swap = pq[i]; pq[i] = pq[j]; pq[j] = swap;
219         qp[pq[i]] = i; qp[pq[j]] = j;
220     }
221
222
223    /**************************************************************
224     * Heap helper functions
225     **************************************************************/
226     private void swim(int k)  {
227         while (k > 1 && less(k/2, k)) {
228             exch(k, k/2);
229             k = k/2;
230         }
231     }
232
233     private void sink(int k) {
234         while (2*k <= N) {
235             int j = 2*k;
236             if (j < N && less(j, j+1)) j++;
237             if (!less(k, j)) break;
238             exch(k, j);
239             k = j;
240         }
241     }
242
243
244    /***********************************************************************
245     * Iterators
246     **********************************************************************/
247
248     /**
249      * Returns an iterator that iterates over the keys on the
250      * priority queue in descending order.
251      * The iterator doesn‘t implement <tt>remove()</tt> since it‘s optional.
252      * @return an iterator that iterates over the keys in descending order
253      */
254     public Iterator<Integer> iterator() { return new HeapIterator(); }
255
256     private class HeapIterator implements Iterator<Integer> {
257         // create a new pq
258         private IndexMaxPQ<Key> copy;
259
260         // add all elements to copy of heap
261         // takes linear time since already in heap order so no keys move
262         public HeapIterator() {
263             copy = new IndexMaxPQ<Key>(pq.length - 1);
264             for (int i = 1; i <= N; i++)
265                 copy.insert(pq[i], keys[pq[i]]);
266         }
267
268         public boolean hasNext()  { return !copy.isEmpty();                     }
269         public void remove()      { throw new UnsupportedOperationException();  }
270
271         public Integer next() {
272             if (!hasNext()) throw new NoSuchElementException();
273             return copy.delMax();
274         }
275     }
276
277     /**
278      * Unit tests the <tt>IndexMaxPQ</tt> data type.
279      */
280     public static void main(String[] args) {
281         // insert a bunch of strings
282         String[] strings = { "it", "was", "the", "best", "of", "times", "it", "was", "the", "worst" };
283
284         IndexMaxPQ<String> pq = new IndexMaxPQ<String>(strings.length);
285         for (int i = 0; i < strings.length; i++) {
286             pq.insert(i, strings[i]);
287         }
288
289         // print each key using the iterator
290         for (int i : pq) {
291             StdOut.println(i + " " + strings[i]);
292         }
293
294         StdOut.println();
295
296         // increase or decrease the key
297         for (int i = 0; i < strings.length; i++) {
298             if (StdRandom.uniform() < 0.5)
299                 pq.increaseKey(i, strings[i] + strings[i]);
300             else
301                 pq.decreaseKey(i, strings[i].substring(0, 1));
302         }
303
304         // delete and print each key
305         while (!pq.isEmpty()) {
306             String key = pq.maxKey();
307             int i = pq.delMax();
308             StdOut.println(i + " " + key);
309         }
310         StdOut.println();
311
312         // reinsert the same strings
313         for (int i = 0; i < strings.length; i++) {
314             pq.insert(i, strings[i]);
315         }
316
317         // delete them in random order
318         int[] perm = new int[strings.length];
319         for (int i = 0; i < strings.length; i++)
320             perm[i] = i;
321         StdRandom.shuffle(perm);
322         for (int i = 0; i < perm.length; i++) {
323             String key = pq.keyOf(perm[i]);
324             pq.delete(perm[i]);
325             StdOut.println(perm[i] + " " + key);
326         }
327
328     }
329 }

IndexMaxPQ.java

2.4.4.7 索引有限队列用例

下面的用例调用了IndexMinPQ的代码Multiway解决了多项归并问题:它将多个有序的输入流归并成一个有序的输出流。许多应用中都会遇到这个问题。输入可能你来自多种科学仪器的输出(按照时间排序),或是来自多个音乐或电影网站的信息列表(按名称或艺术家名字排列),或是商业交易(按账号或时间排序),或者其他。如果有足够的空间,你可以把它们简单地读入一个数组并排序,但如果用例优先队列,无论输入有多长你都可以把它们全部读入并排序。

 1 /**
 2  *  The <tt>Multiway</tt> class provides a client for reading in several
 3  *  sorted text files and merging them together into a single sorted
 4  *  text stream.
 5  *  This implementation uses a {@link IndexMinPQ} to perform the multiway
 6  *  merge.
 7  *  <p>
 8  *  For additional documentation, see <a href="http://algs4.cs.princeton.edu/24pq">Section 2.4</a>
 9  *  of <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
10  *
11  *  @author Robert Sedgewick
12  *  @author Kevin Wayne
13  */
14
15 public class Multiway {
16
17     // This class should not be instantiated.
18     private Multiway() { }
19
20     // merge together the sorted input streams and write the sorted result to standard output
21     private static void merge(In[] streams) {
22         int N = streams.length;
23         IndexMinPQ<String> pq = new IndexMinPQ<String>(N);
24         for (int i = 0; i < N; i++)
25             if (!streams[i].isEmpty())
26                 pq.insert(i, streams[i].readString());
27
28         // Extract and print min and read next from its stream.
29         while (!pq.isEmpty()) {
30             StdOut.print(pq.minKey() + " ");
31             int i = pq.delMin();
32             if (!streams[i].isEmpty())
33                 pq.insert(i, streams[i].readString());
34         }
35         StdOut.println();
36     }
37
38
39     /**
40      *  Reads sorted text files specified as command-line arguments;
41      *  merges them together into a sorted output; and writes
42      *  the results to standard output.
43      *  Note: this client does not check that the input files are sorted.
44      */
45     public static void main(String[] args) {
46         int N = args.length;
47         In[] streams = new In[N];
48         for (int i = 0; i < N; i++)
49             streams[i] = new In(args[i]);
50         merge(streams);
51     }
52 } 

Multiway.java

这段代码调用了IndexMinPQ()来将作为命令行参数输入的多行有序字符串归并为一行有序的输出。每个输入流的索引都关联着一个元素(输入中的下个字符串)。初始化之后,代码进入一个循环,删除并打印出队列中最小的字符串,然后将该输入的下一个字符串添加为一个元素。



《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅴ,布布扣,bubuko.com

时间: 2024-10-20 15:12:29

《Algorithms 4th Edition》读书笔记——2.4 优先队列(priority queue)-Ⅴ的相关文章

《Algorithms 4th Edition》读书笔记——3.1 符号表(Elementary Symbol Tables)-Ⅲ

3.1.3 用例举例 在学习它的实现之前我们还是应该先看看如何使用它.相应的我们这里考察两个用例:一个用来跟踪算法在小规模输入下的行为测试用例和一个来寻找更高效的实现的性能测试用例. 3.1.3.1 行为测试用例 为了在小规模的的输入下跟踪算法的行为,我们用一下测试用例测试我们对符号表的所有实现.这段代码会从标准输入接受多个字符串,构造一张符号表来将i 和第i 个字符串相关联,然后打印符号表.我们假设所有的字符串都只有一个字母.一般我们会使用”S E A R C H E X A M P L E”

《Algorithms 4th Edition》读书笔记——3.1 符号表(Elementary Symbol Tables)-Ⅳ

3.1.4 无序链表中的顺序查找 符号表中使用的数据结构的一个简单选择是链表,每个结点存储一个键值对,如以下代码所示.get()的实现即为遍历链表,用equals()方法比较需被查找的键和每个节点中的键.如果匹配成功我们就返回null.put()的实现也是遍历链表,用equals()方法比较需被查找的键.如果匹配成功我们就用第二个参数指定的值更新和改键现关联的值,否则我们就用给定的键值对创建一个新的节点并将其插入到链表的开头.这种方法也被称为顺序查找:在查找中我们一个一个地顺序遍历符号表中的所有

《C++ Primer 4th》读书笔记 第4章-数组和指针

原创文章,转载请注明出处: http://www.cnblogs.com/DayByDay/p/3911573.html <C++ Primer 4th>读书笔记 第4章-数组和指针

《C++ Primer 4th》读书笔记 第5章-表达式

原创文章,转载请注明出处: http://www.cnblogs.com/DayByDay/p/3912114.html <C++ Primer 4th>读书笔记 第5章-表达式

《C++ Primer 4th》读书笔记 第7章-函数

原创文章,转载请注明出处:http://www.cnblogs.com/DayByDay/p/3912413.html <C++ Primer 4th>读书笔记 第7章-函数

《C++ Primer 4th》读书笔记 第6章-语句

原创文章,转载请注明出处: http://www.cnblogs.com/DayByDay/p/3912407.html <C++ Primer 4th>读书笔记 第6章-语句

c++ STL:队列queue、优先队列priority queue 的使用

说明:本文全文转载而来,原文链接:http://www.cppblog.com/wanghaiguang/archive/2012/06/05/177644.html C++ Queues(队列) C++队列是一种容器适配器,它给予程序员一种先进先出(FIFO)的数据结构.1.back() 返回一个引用,指向最后一个元素2.empty() 如果队列空则返回真3.front() 返回第一个元素4.pop() 删除第一个元素5.push() 在末尾加入一个元素6.size() 返回队列中元素的个数

《C++ Primer 4th》读书笔记 序

注:本系列读书笔记是博主写作于两三年前的,所以是基于<C++ Primer>第四版的,目前该书已更新至第五版,第五版是基于C++11标准的,貌似更新挺多的.博主今年应届硕士毕业,如若过阵子能如愿找到一份Linux C/C++方面的工作,我会重读第五版,并对该系列读书笔记进行更新.另外,使用的作图工具是Minjet MindManager 2014. 第3章-标准库类型 第4章-数组和指针 第5章-表达式 第6章-语句 第7章-函数 第8章-标准IO库 第9章-顺序容器 第10章-关联容器 第1

优先队列Priority Queue和堆Heap

对COMP20003中的Priority queue部分进行总结.图片来自于COMP20003 queue队列,顾名思义特点先进先出 priority queue优先队列,出来的顺序按照优先级priority大小,越大(小)的先pop. 普通的方法: Unsorted array: Construct: O(n) Get highest priority: O(n) Sorted array: Construct: O(n2) Get highest priority: O(1) 使用堆heap