Problem Description
Given n integers.
You have two operations:
U A
B: replace the Ath number by B. (index counting from 0)
Q A B: output the
length of the longest consecutive increasing subsequence (LCIS) in [a, b].
Input
T in the first line, indicating the case
number.
Each case starts with two integers n ,
m(0<n,m<=105).
The next line has n
integers(0<=val<=105).
The next m lines each has an
operation:
U A B(0<=A,n , 0<=B=105)
OR
Q A
B(0<=A<=B< n).
Output
For each Q, output the answer.
题目大意:给n个数,动态地修改某个数的值,或者查询一段区间的LCIS(最长连续上升子序列,坑爹的标题……)。
思路:线段树,每个点维护一个区间的从左边开始的最长的LCIS,从右边开始的最长的LCIS,这个区间最大的LCIS。然后随便搞搞就能过了……
代码(593MS):
1 #include <iostream>
2 #include <cstdio>
3 #include <cstring>
4 #include <algorithm>
5 using namespace std;
6
7 const int MAXN = 100010 << 2;
8
9 int lmax[MAXN], rmax[MAXN], mmax[MAXN];
10 int a[MAXN], n, m, T;
11
12 void update(int x, int l, int r, int pos, int val) {
13 if(pos <= l && r <= pos) {
14 a[pos] = val;
15 } else {
16 int ll = x << 1, rr = ll | 1, mid = (l + r) >> 1;
17 if(pos <= mid) update(ll, l, mid, pos, val);
18 if(mid < pos) update(rr, mid + 1, r, pos, val);
19 if(a[mid] < a[mid + 1]) {
20 lmax[x] = lmax[ll] + (lmax[ll] == mid - l + 1) * lmax[rr];
21 rmax[x] = rmax[rr] + (rmax[rr] == r - mid) * rmax[ll];
22 mmax[x] = max(rmax[ll] + lmax[rr], max(mmax[ll], mmax[rr]));
23 } else {
24 lmax[x] = lmax[ll];
25 rmax[x] = rmax[rr];
26 mmax[x] = max(mmax[ll], mmax[rr]);
27 }
28 }
29 }
30
31 int query(int x, int l, int r, int aa, int bb) {
32 if(aa <= l && r <= bb) {
33 return mmax[x];
34 } else {
35 int ll = x << 1, rr = ll | 1, mid = (l + r) >> 1;
36 int ans = 0;
37 if(aa <= mid) ans = max(ans, query(ll, l, mid, aa, bb));
38 if(mid < bb) ans = max(ans, query(rr, mid + 1, r, aa, bb));
39 if(a[mid] < a[mid + 1]) ans = max(ans, min(rmax[ll], mid - aa + 1) + min(lmax[rr], bb - mid));
40 return ans;
41 }
42 }
43
44 void build(int x, int l, int r) {
45 if(l == r) {
46 lmax[x] = rmax[x] = mmax[x] = 1;
47 } else {
48 int ll = x << 1, rr = ll | 1, mid = (l + r) >> 1;
49 build(ll, l, mid);
50 build(rr, mid + 1, r);
51 if(a[mid] < a[mid + 1]) {
52 lmax[x] = lmax[ll] + (lmax[ll] == mid - l + 1) * lmax[rr];
53 rmax[x] = rmax[rr] + (rmax[rr] == r - mid) * rmax[ll];
54 mmax[x] = max(rmax[ll] + lmax[rr], max(mmax[ll], mmax[rr]));
55 } else {
56 lmax[x] = lmax[ll];
57 rmax[x] = rmax[rr];
58 mmax[x] = max(mmax[ll], mmax[rr]);
59 }
60 }
61 }
62
63 int main() {
64 scanf("%d", &T);
65 while(T--) {
66 scanf("%d%d", &n, &m);
67 for(int i = 0; i < n; ++i) scanf("%d", &a[i]);
68 build(1, 0, n - 1);
69 while(m--) {
70 char c;
71 int a, b;
72 scanf(" %c%d%d", &c, &a, &b);
73 if(c == ‘Q‘) printf("%d\n", query(1, 0, n - 1, a, b));
74 else update(1, 0, n - 1, a, b);
75 }
76 }
77 }
HDU 3308 LCIS(线段树),布布扣,bubuko.com
时间: 2024-12-28 22:04:44