位运算操作

来源:https://discuss.leetcode.com/topic/50315/a-summary-how-to-use-bit-manipulation-to-solve-problems-easily-and-efficiently/2

WIKI

Bit manipulation is the act of algorithmically manipulating bits or other pieces of data shorter than a word. Computer programming tasks that require bit manipulation include low-level device control, error detection and correction algorithms, data compression, encryption algorithms, and optimization. For most other tasks, modern programming languages allow the programmer to work directly with abstractions instead of bits that represent those abstractions. Source code that does bit manipulation makes use of the bitwise operations: AND, OR, XOR, NOT, and bit shifts.

Bit manipulation, in some cases, can obviate or reduce the need to loop over a data structure and can give many-fold speed ups, as bit manipulations are processed in parallel, but the code can become more difficult to write and maintain.

DETAILS

Basics

At the heart of bit manipulation are the bit-wise operators & (and), | (or), ~ (not) and ^ (exclusive-or, xor) and shift operators a << b and a >> b.

There is no boolean operator counterpart to bitwise exclusive-or, but there is a simple explanation. The exclusive-or operation takes two inputs and returns a 1 if either one or the other of the inputs is a 1, but not if both are. That is, if both inputs are 1 or both inputs are 0, it returns 0. Bitwise exclusive-or, with the operator of a caret, ^, performs the exclusive-or operation on each pair of bits. Exclusive-or is commonly abbreviated XOR.

  • Set union A | B
  • Set intersection A & B
  • Set subtraction A & ~B
  • Set negation ALL_BITS ^ A or ~A
  • Set bit A |= 1 << bit
  • Clear bit A &= ~(1 << bit)
  • Test bit (A & 1 << bit) != 0
  • Extract last bit A&-A or A&~(A-1) or x^(x&(x-1))
  • Remove last bit A&(A-1)
  • Get all 1-bits ~0

Examples

Count the number of ones in the binary representation of the given number

int count_one(int n) {
    while(n) {
        n = n&(n-1);
        count++;
    }
    return count;
}

Is power of four (actually map-checking, iterative and recursive methods can do the same)

bool isPowerOfFour(int n) {
    return !(n&(n-1)) && (n&0x55555555);
    //check the 1-bit location;
}

^ tricks

Use ^ to remove even exactly same numbers and save the odd, or save the distinct bits and remove the same.

SUM OF TWO INTEGERS

Use ^ and & to add two integers

int getSum(int a, int b) {
    return b==0? a:getSum(a^b, (a&b)<<1); //be careful about the terminating condition;
}
MISSING NUMBER

Given an array containing n distinct numbers taken from 0, 1, 2, ..., n, find the one that is missing from the array. For example, Given nums = [0, 1, 3] return 2. (Of course, you can do this by math.)

int missingNumber(vector<int>& nums) {
    int ret = 0;
    for(int i = 0; i < nums.size(); ++i) {
        ret ^= i;
        ret ^= nums[i];
    }
    return ret^=nums.size();
}

| tricks

Keep as many 1-bits as possible

Find the largest power of 2 (most significant bit in binary form), which is less than or equal to the given number N.

long largest_power(long N) {
    //changing all right side bits to 1.
    N = N | (N>>1);
    N = N | (N>>2);
    N = N | (N>>4);
    N = N | (N>>8);
    N = N | (N>>16);
    return (N+1)>>1;
}
REVERSE BITS

Reverse bits of a given 32 bits unsigned integer.

Solution
uint32_t reverseBits(uint32_t n) {
    unsigned int mask = 1<<31, res = 0;
    for(int i = 0; i < 32; ++i) {
        if(n & 1) res |= mask;
        mask >>= 1;
        n >>= 1;
    }
    return res;
}
uint32_t reverseBits(uint32_t n) {
	uint32_t mask = 1, ret = 0;
	for(int i = 0; i < 32; ++i){
		ret <<= 1;
		if(mask & n) ret |= 1;
		mask <<= 1;
	}
	return ret;
}

& tricks

Just selecting certain bits

Reversing the bits in integer

x = ((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1);
x = ((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2);
x = ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);
x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
x = ((x & 0xffff0000) >> 16) | ((x & 0x0000ffff) << 16);
BITWISE AND OF NUMBERS RANGE

Given a range [m, n] where 0 <= m <= n <= 2147483647, return the bitwise AND of all numbers in this range, inclusive. For example, given the range [5, 7], you should return 4.

Solution
int rangeBitwiseAnd(int m, int n) {
    int a = 0;
    while(m != n) {
        m >>= 1;
        n >>= 1;
        a++;
    }
    return m<<a;
}
NUMBER OF 1 BITS

Write a function that takes an unsigned integer and returns the number of ’1‘ bits it has (also known as the Hamming weight).

Solution
int hammingWeight(uint32_t n) {
	int count = 0;
	while(n) {
		n = n&(n-1);
		count++;
	}
	return count;
}
int hammingWeight(uint32_t n) {
    ulong mask = 1;
    int count = 0;
    for(int i = 0; i < 32; ++i){ //31 will not do, delicate;
        if(mask & n) count++;
        mask <<= 1;
    }
    return count;
}

Application

REPEATED DNA SEQUENCES

All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACGAATTCCG". When studying DNA, it is sometimes useful to identify repeated sequences within the DNA. Write a function to find all the 10-letter-long sequences (substrings) that occur more than once in a DNA molecule.
For example,
Given s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT",
Return: ["AAAAACCCCC", "CCCCCAAAAA"].

Solution
class Solution {
public:
    vector<string> findRepeatedDnaSequences(string s) {
        int sLen = s.length();
        vector<string> v;
        if(sLen < 11) return v;
        char keyMap[1<<21]{0};
        int hashKey = 0;
        for(int i = 0; i < 9; ++i) hashKey = (hashKey<<2) | (s[i]-‘A‘+1)%5;
        for(int i = 9; i < sLen; ++i) {
            if(keyMap[hashKey = ((hashKey<<2)|(s[i]-‘A‘+1)%5)&0xfffff]++ == 1)
                v.push_back(s.substr(i-9, 10));
        }
        return v;
    }
};

But the above solution can be invalid when repeated sequence appears too many times, in which case we should use unordered_map<int, int> keyMap to replace char keyMap[1<<21]{0}here.

MAJORITY ELEMENT

Given an array of size n, find the majority element. The majority element is the element that appears more than ? n/2 ? times. (bit-counting as a usual way, but here we actually also can adopt sorting and Moore Voting Algorithm)

Solution
int majorityElement(vector<int>& nums) {
    int len = sizeof(int)*8, size = nums.size();
    int count = 0, mask = 1, ret = 0;
    for(int i = 0; i < len; ++i) {
        count = 0;
        for(int j = 0; j < size; ++j)
            if(mask & nums[j]) count++;
        if(count > size/2) ret |= mask;
        mask <<= 1;
    }
    return ret;
}
SINGLE NUMBER III

Given an array of integers, every element appears three times except for one. Find that single one. (Still this type can be solved by bit-counting easily.) But we are going to solve it by digital logic design

Solution
//inspired by logical circuit design and boolean algebra;
//counter - unit of 3;
//current   incoming  next
//a b            c    a b
//0 0            0    0 0
//0 1            0    0 1
//1 0            0    1 0
//0 0            1    0 1
//0 1            1    1 0
//1 0            1    0 0
//a = a&~b&~c + ~a&b&c;
//b = ~a&b&~c + ~a&~b&c;
//return a|b since the single number can appear once or twice;
int singleNumber(vector<int>& nums) {
    int t = 0, a = 0, b = 0;
    for(int i = 0; i < nums.size(); ++i) {
        t = (a&~b&~nums[i]) | (~a&b&nums[i]);
        b = (~a&b&~nums[i]) | (~a&~b&nums[i]);
        a = t;
    }
    return a | b;
}
;
MAXIMUM PRODUCT OF WORD LENGTHS

Given a string array words, find the maximum value of length(word[i]) * length(word[j]) where the two words do not share common letters. You may assume that each word will contain only lower case letters. If no such two words exist, return 0.

Example 1:
Given ["abcw", "baz", "foo", "bar", "xtfn", "abcdef"]
Return 16
The two words can be "abcw", "xtfn".

Example 2:
Given ["a", "ab", "abc", "d", "cd", "bcd", "abcd"]
Return 4
The two words can be "ab", "cd".

Example 3:
Given ["a", "aa", "aaa", "aaaa"]
Return 0
No such pair of words.

Solution

Since we are going to use the length of the word very frequently and we are to compare the letters of two words checking whether they have some letters in common:

  • using an array of int to pre-store the length of each word reducing the frequently measuring process;
  • since int has 4 bytes, a 32-bit type, and there are only 26 different letters, so we can just use one bit to indicate the existence of the letter in a word.
int maxProduct(vector<string>& words) {
    vector<int> mask(words.size());
    vector<int> lens(words.size());
    for(int i = 0; i < words.size(); ++i) lens[i] = words[i].length();
    int result = 0;
    for (int i=0; i<words.size(); ++i) {
        for (char c : words[i])
            mask[i] |= 1 << (c - ‘a‘);
        for (int j=0; j<i; ++j)
            if (!(mask[i] & mask[j]))
                result = max(result, lens[i]*lens[j]);
    }
    return result;
}

Attention

  • result after shifting left(or right) too much is undefined
  • right shifting operations on negative values are undefined
  • right operand in shifting should be non-negative, otherwise the result is undefined
  • The & and | operators have lower precedence than comparison operators

SETS

All the subsets
A big advantage of bit manipulation is that it is trivial to iterate over all the subsets of an N-element set: every N-bit value represents some subset. Even better, if A is a subset of B then the number representing A is less than that representing B, which is convenient for some dynamic programming solutions.

It is also possible to iterate over all the subsets of a particular subset (represented by a bit pattern), provided that you don’t mind visiting them in reverse order (if this is problematic, put them in a list as they’re generated, then walk the list backwards). The trick is similar to that for finding the lowest bit in a number. If we subtract 1 from a subset, then the lowest set element is cleared, and every lower element is set. However, we only want to set those lower elements that are in the superset. So the iteration step is just i = (i - 1) & superset.

vector<vector<int>> subsets(vector<int>& nums) {
    vector<vector<int>> vv;
    int size = nums.size();
    if(size == 0) return vv;
    int num = 1 << size;
    vv.resize(num);
    for(int i = 0; i < num; ++i) {
        for(int j = 0; j < size; ++j)
            if((1<<j) & i) vv[i].push_back(nums[j]);
    }
    return vv;
}

Actually there are two more methods to handle this using recursion and iteration respectively.

BITSET

bitset stores bits (elements with only two possible values: 0 or 1, true or false, ...).
The class emulates an array of bool elements, but optimized for space allocation: generally, each element occupies only one bit (which, on most systems, is eight times less than the smallest elemental type: char).

// bitset::count
#include <iostream>       // std::cout
#include <string>         // std::string
#include <bitset>         // std::bitset

int main () {
  std::bitset<8> foo (std::string("10110011"));
  std::cout << foo << " has ";
  std::cout << foo.count() << " ones and ";
  std::cout << (foo.size()-foo.count()) << " zeros.\n";
  return 0;
}
时间: 2024-10-05 22:37:28

位运算操作的相关文章

数字位运算操作与算法简单示例

我们对于位运算可能既陌生又熟悉.知道其运算方法运算过程,但不能运用好它. 首先,我们还是回顾一下Java中位运算都包含那些操作: 一.与运算(&) 运算法则:将二进制数进行按位与运算.0&0=0:0&1=0:1&1=1 : 如:0011 & 0010 = 0010: 二.或运算(|) 运算法则:将二进制数进行按位或运算.0|0 =0:1|0 = 1;  1|1=1 如:0011 & 0010 = 0011: 三.异或运算(^) 运算法则:将二进制数进行按位异

Java 中的按位运算操作

我是木龙小驴,菜鸟一枚,这里发点文字,大家共同学习交流 位运算符无非就是<<  还有 >> 以及>>> 首先很久很久以前,那时候没有操作系统,只有电,计算机运算跟开关点灯差不多,亮代表开,不亮代表关,然后根据电压的高低来进行记录操作. 所以CPU进行所有处理都是二进制的,也就是1 和 0 组成,比如说十进制的1 就是0001 ,2就是0010,3就是0011. 二进制就是逢二进一,当一个数字,或者是字符,或者是什么东西(在计算机运算时都是二进制)如:0010 00

一些有用的位运算操作

第一周 从C走进C++ 003 位运算

1. 基本概念 位运算: 用于对整数类型(int,char, long 等)变量中的 某一位(bit),或者若干位进行操作. 比如: 1) 判断某一位是否为1 2) 只改变其中某一位,而保持其他位都不变. C/C++语言提供了六种位运算符来进行位运算操作: &   按位与(双目) |    按位或(双目) ^   按位异或(双目) ~   按位非(取反)(单目) << 左移(双目) >> 右移(双目) 2. 按位与 “&” 将参与运算的两操作数各对应的二进制位进行与

4.9位运算

Q:用位运算操作实现两个整数的交换. #include <iostream> using namespace std; int main() { int a,b; cin>>a>>b; cout<<a<<" "<<b<<endl; a=a^b; b=a^b; a=a^b; cout<<a<<" "<<b<<endl; return 0;

位运算+引用+const+new/delete+内联函数、函数重载、函数缺省参数

一.位运算 应用: 1.判断某一位是否为1 2.只改变其中某一位,而保持其它位都不变 位运算操作: 1.& 按位与(双目): 将某变量中的某些位清0(与0位与)且同时保留其它位不变(与1位与):获取某变量中某一位(与其位与后判断是否为该数) 2.|  按位或(双目): 将某变量中的某些位置1(与1位或)且保留其它位不变 3.^  按位异或(双目): 将某变量中的某些位取反(与1异或)且保留其它位不变 异或运算特点: 如果 a^b=c,那么就有 c^b = a以及c^a=b.(穷举法可证---用于

javascript的变态位运算

var a = "10" | 0; alert(a); alert (typeof a);结果为10,number. 这就是说这条语句可以将字符串转化为number. 如果:var a = "sss" | 0;alert(a);结果为0.parseInt("sss")的话,会返回NaN.这个太强大了,就是说不管是啥都能转换为number... 比如:(function (){})| 0;({})| 0;([])| 0; 我了个去……变态啊. 这玩

FZU1892接水管游戏-BFS加上简单的状态压缩和位运算处理

原题地址:http://acm.fzu.edu.cn/problem.php?pid=1892 Problem 1892 接水管游戏 Accept: 108    Submit: 498 Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description 接水管游戏的规则如下: 1.在N*N大小的方格上有两个特别的水管,分别为进水口和出水口: 2.有7种1*1大小的水管需要放在这N*N大小的方格内,使得水流能够从进水口经过这些

位运算相关内容整理

位运算相关内容整理 1) 负数 负数的右移:负数右移的话,由于要保持它是负数,所以负数的二进制的左边补1.如果一直右移的话,最后就就变成0xFFFFFFFF 即-1 如: -4>>1 为-2 :-4>>2为-1 负数的左移:跟正整数左移一样,右边补0.左移总是在低位补零,高位丢失,因而负数左移后可能会变成正数. int x = 0x8fff0000; cout << (x << 1); // 输出为536739840 cout << (-2 &l