字符串匹配的KMP算法

html, body {
font-size: 15px;
}

body {
font-family: Helvetica, "Hiragino Sans GB", 微软雅黑, "Microsoft YaHei UI", SimSun, SimHei, arial, sans-serif;
line-height: 1.6;
color: ;
background-color: ;
margin: 0;
padding: 16px 20px;
}

h1, h2, h3, h4, h5, h6 {
margin: 20px 0 10px;
margin: 1.33rem 0 0.667rem;
padding: 0;
font-weight: bold;
}

h1 {
font-size: 21px;
font-size: 1.4rem;
}

h2 {
font-size: 20px;
font-size: 1.33rem;
}

h3 {
font-size: 18px;
font-size: 1.2rem;
}

h4 {
font-size: 17px;
font-size: 1.13rem;
}

h5 {
font-size: 15px;
font-size: 1rem;
}

h6 {
font-size: 15px;
font-size: 1rem;
color: #777777;
margin: 1rem 0;
}

div, p, ul, ol, dl, li {
margin: 0;
}
blockquote, table, pre, code{
margin: 8px 0;
}

ul, ol {
padding-left: 32px;
padding-left: 2.13rem;
}

blockquote {
border-left: 4px solid #dddddd;
padding: 0 12px;
padding: 0 0.8rem;
}

blockquote > :first-child {
margin-top: 0;
}

blockquote > :last-child {
margin-bottom: 0;
}

img {
border: 0;
max-width: 100%;
height: auto !important;
margin: 2px 0;
}

table {
border-collapse: collapse;
border: 1px solid #bbbbbb;
}

td {
padding:4px 8px;
border-collapse: collapse;
border: 1px solid #bbbbbb;
}

@media screen and (max-width: 660px) {
body {
padding: 20px 18px;
padding: 1.33rem 1.2rem;
}
}

@media only screen and (-webkit-max-device-width: 1024px), only screen and (-o-max-device-width: 1024px), only screen and (max-device-width: 1024px), only screen and (-webkit-min-device-pixel-ratio: 3), only screen and (-o-min-device-pixel-ratio: 3), only screen and (min-device-pixel-ratio: 3) {
html, body {
font-size: 17px;
}

body {
line-height: 1.7;
padding: 0.75rem 0.9375rem;
color: #353c47;
}

h1 {
font-size: 2.125rem;
}

h2 {
font-size: 1.875rem;
}

h3 {
font-size: 1.625rem;
}

h4 {
font-size: 1.375rem;
}

h5 {
font-size: 1.125rem;
}

h6 {
color: inherit;
}

ul, ol {
padding-left: 2.5rem;
}

blockquote {
padding: 0 0.9375rem;
}
}

字符串匹配的KMP算法

作者: 阮一峰  发布时间: 2013-08-28 17:12  阅读: 43515 次  推荐: 106   原文链接   [收藏]

  字符串匹配是计算机的基本任务之一。

  举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

  许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

  这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

  1.

  首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

  2.

  因为B与A不匹配,搜索词再往后移。

  3.

  就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

  4.

  接着比较字符串和搜索词的下一个字符,还是相同。

  5.

  直到字符串有一个字符,与搜索词对应的字符不相同为止。

  6.

  这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

  7.

  一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

  8.

  怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

  9.

  已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

  移动位数 = 已匹配的字符数 - 对应的部分匹配值

  因为 6 - 2 等于4,所以将搜索词向后移动4位。

  10.

  因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

  11.

  因为空格与A不匹配,继续后移一位。

  12.

  逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

  13.

  逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

  14.

  下面介绍《部分匹配表》是如何产生的。

  首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

  15.

  "部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

  - "A"的前缀和后缀都为空集,共有元素的长度为0;

  - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

  - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

  - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

  - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

  - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

  - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

  16.

  "部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

时间: 2024-10-15 09:50:53

字符串匹配的KMP算法的相关文章

[算法系列之二十六]字符串匹配之KMP算法

一 简介 KMP算法是一种改进的字符串匹配算法,由D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此人们称它为克努特-莫里斯-普拉特操作(简称KMP算法).KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的. 二 基于部分匹配表的KMP算法 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含搜索串"ABCDABD"? 步骤1:字符串"BBC ABC

字符串匹配(KMP 算法 含代码)

主要是针对字符串的匹配算法进行解说 有关字符串的基本知识 传统的串匹配法 模式匹配的一种改进算法KMP算法 网上一比較易懂的解说 小样例 1计算next 2计算nextval 代码 有关字符串的基本知识 串(string或字符串)是由零个或多个字符组成的有限序列,一般记为 当中s是串的名,用单引號括起来的字符序列是串的值:ai(1<=i<=n)能够是字母.数值或其它字符.串中字符的数组 n称为串的长度.零个字符的串称为空串,它的长度为0 串中随意个连续的字符组成的子序列称为该串的子串. 包括子

字符串匹配与KMP算法笔记

>>字符串匹配问题 字符串匹配问题即在匹配串中寻找模式串是否出现, 首先想到的是使用暴力破解,也就是Brute Force(BF或蛮力搜索) 算法,将匹配串和模式串左对齐,然后从左向右一个一个进行比较, 如果不成功则模式串向右移动一个单位,直到匹配成功或者到达匹配串最后仍然不成功,返回失败. 很明显,这种算法有很多的地方可以优化,假设要搜索的串为S,长度为n,要匹配的串为M,长度为m,时间复杂度为O(nm). >>KMP算法 Knuth-Morris-Pratt算法以三个发明者命名

字符串匹配的KMP算法(转)

字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"? 许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一.它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth. 这种算法不太容易理解,网上有很多解释,但读起来都很费劲.直到读到Jake Boxer的文章,我才真正理解这种算法.下面,我用自己的语言

字符串匹配的KMP算法(转载)

字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"? 许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一.它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth. 这种算法不太容易理解,网上有很多解释,但读起来都很费劲.直到读到Jake Boxer的文章,我才真正理解这种算法.下面,我用自己的语言

[转] 字符串匹配的KMP算法

字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"? 许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一.它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth. 这种算法不太容易理解,网上有很多解释,但读起来都很费劲.直到读到Jake Boxer的文章,我才真正理解这种算法.下面,我用自己的语言

字符串匹配之KMP算法

1.前言: leetcode上的28. Implement strStr()就是一个字符串匹配问题.字符串匹配是计算机的基本任务之一.所以接下来的两篇日志,都对相关的算法进行总结. 2.暴力求解算法 如果用暴力匹配的思路,并假设现在文本串S匹配到 i 位置,模式串P匹配到 j 位置,则有: 如果当前字符匹配成功(即S[i] == P[j]),则i++,j++,继续匹配下一个字符: 如果失配(即S[i]! = P[j]),令i = i - (j - 1),j = 0.相当于每次匹配失败时,i 回溯

字符串匹配暴力算法 与 字符串匹配的KMP算法

声明:先看一下阮一峰的网络日志关于字符串的KMP算法的讲解.本文图片均引用于这篇日志. 在先前的笔试中遇到了关于字符串匹配的问题,一时脑袋卡壳没写好算法.现在就来分析分析 暴力算法和KMP算法各自原理,以及代码实现,之间差异,并且总结一下好算法的一般思路. =========================================================================== 各自原理: 暴力算法: 1. 我们把长的字符串做为一个文本字符串,命名为strText,把

字符串匹配的KMP算法(转)

转载:http://kb.cnblogs.com/page/176818/ 字符串匹配是计算机的基本任务之一. 举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"? 许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一.它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth. 这种算法不太容易理解,网上有很多解释,但读起来都很费劲.直