定时器管理:nginx的红黑树和libevent的堆

libevent 发生超时后,

while循环一次从堆顶del timer——直到最新调整的最小堆顶不是超时事件为止,(实际是del event),但是会稍后把这个timeout的 event放到active 任务list里,

等待处理,event标记为timeout,等处理actvie队列时再由应用层callback函数决定怎么处理标记为timeout的事件。

nginx处理超时时,直接删除红黑树中( event结构体里的 )rb node成员,同时调用应用层早已通过add timer注册好的超时handler函数。之所以没有用堆,

因为每次直接从内部删除节点,而不是堆顶部。

关键点,采用堆,删除时间是O(1),但是要调整堆,logn。插入时间基本是lgn。

采用红黑树,删除节点是3次旋转,但是,找到最小节点要logn。插入时间基本是lgn。

总体看,都差不多。http://blog.sina.com.cn/s/blog_56e6a0750101b0fo.html

时间: 2024-10-14 04:10:59

定时器管理:nginx的红黑树和libevent的堆的相关文章

Nginx之红黑树

/* * Copyright (C) Igor Sysoev * Copyright (C) Nginx, Inc. */ #ifndef _NGX_RBTREE_H_INCLUDED_ #define _NGX_RBTREE_H_INCLUDED_ #include <ngx_config.h> #include <ngx_core.h> typedef ngx_uint_t  ngx_rbtree_key_t; typedef ngx_int_t   ngx_rbtree_ke

nginx学习九 高级数据结构之红黑树ngx_rbtree_t

1红黑树简介 先来看下算法导论对R-B Tree的介绍: 红黑树,一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black. 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平的. 红黑树,作为一棵二叉查找树,满足二叉查找树的一般性质.下面,来了解下 二叉查找树的一般性质. 二叉查找树 二叉查找树,也称有序二叉树(ordered binary tree),或已排序二叉树(sorted binary tree

红黑树和AVL树的区别(转)

add by zhj: AVL树和红黑树都是平衡二叉树,虽然AVL树是最早发明的平衡二叉树,但直接把平衡二叉树等价于AVL树,我认为非常不合适. 但很多地方都在这么用.两者的比较如下 平衡二叉树类型 平衡度 调整频率 适用场景 AVL树 高 高 查询多,增/删少 红黑树 低 低 增/删频繁 原文:https://blog.csdn.net/u010899985/article/details/80981053 一,AVL树 (1)简介 一般用平衡因子判断是否平衡并通过旋转来实现平衡,左右子树树高

红黑树、B(+)树、跳表、AVL等数据结构,应用场景及分析,以及一些英文缩写

在网上学习了一些材料. 这一篇:https://www.zhihu.com/question/30527705 AVL树:最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间的管理用到了AVL树 红黑树:平衡二叉树,广泛用在C++的STL中.map和set都是用红黑树实现的.我们熟悉的STL的map容器底层是RBtree,当然指的不是unordered_map,后者是hash. B/B+树用在磁盘文件组织 数据索引和数据库索引 Trie树 字典树,用在统计和排序大量字符

浅谈AVL树,红黑树,B树,B+树原理及应用

背景:这几天在看<高性能Mysql>,在看到创建高性能的索引,书上说mysql的存储引擎InnoDB采用的索引类型是B+Tree,那么,大家有没有产生这样一个疑问,对于数据索引,为什么要使用B+Tree这种数据结构,和其它树相比,它能体现的优点在哪里? 看完这篇文章你就会了解到这些数据结构的原理以及它们各自的应用场景. 二叉查找树 简介 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为

红黑树RB_tree

红黑树也是一种而叉搜索树,因此二叉搜索树的性质红黑树都具有,同时,我们知道为了避免最坏情况下的二叉搜索树(就是高度不平衡的情况)衍生出了AVL树,使其任何节点的左右子树的高度差相差最多1,从而达到平衡,以确保最坏情况下的搜索效率.当然红黑树为了比较好的搜索效率降低了对平衡的要求,但是红黑树仍然具有良好的平衡状态. AVL树与RB_tree AVL树也称为高度平衡树,其插入,删除,查找在平均和最坏情况下都是O(log n),增加和删除要通过一次或多次树的旋转来重新平衡这个树. RB_tree并不追

AVL树、红黑树以及B树介绍

简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与插入,而查询效率则就比较慢了,本文要分享学习的树就是为了平衡这种静态操作与动态操作的差距. 一.二叉查找树 简介 满足下面条件就是二叉查找树 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为空,则右子树的值均大于于根节点的值. 任意节点的左右子树也分别是二叉查找树. 没有键值

红黑树(附完整C代码)

版权声明:原创不易,转载请注明转自weewqrer 红黑树 红黑树简介 首先红黑树是一棵二叉搜索树,它在每个结点上增加了一个存储位来表示结点的颜色,可以是RED或者BLACK.通过对一条从根节点到NIL叶节点(指空结点或者下面说的哨兵)的简单路径上各个结点在颜色进行约束,红黑树确保没有一条路径会比其他路径长出2倍,因而是近似平衡的. 用途 红黑树和AVL树一样都对插入时间.删除时间和查找时间提供了最好可能的最坏情况担保.对于查找.插入.删除.最大.最小等动态操作的时间复杂度为O(lgn).常见的

【算法导论学习-26】 二叉树专题4:红黑树、AVL树、B-Tree

1.   红黑树(Red-Black Trees) 参考<算法导论>P308页,红黑树是一种对树的高度要求最灵活的准平衡二叉搜索树.五大属性: 1: Every node is either RED or BLACK. 2: The root is black. 3: Every leaf(NIL) is black.  (The NIL is the sentinel.) 4: If a node is RED, then both its children areblack. 5: For