Linux编程之UDP SOCKET全攻略

这篇文章将对linux下udp socket编程重要知识点进行总结,无论是开发人员应知应会的,还是说udp socket的一些偏僻知识点,本文都会讲到。尽可能做到,读了一篇文章之后,大家对udp socket有一个比较全面的认识。本文分为两个专题,第一个是常用的upd socket框架,第二个是一些udp socket并不常用但又相当重要的知识点。

一、基本的udp socket编程

1. UDP编程框架
要使用UDP协议进行程序开发,我们必须首先得理解什么是什么是UDP?这里简单概括一下。

UDP(user datagram protocol)的中文叫用户数据报协议,属于传输层。UDP是面向非连接的协议,它不与对方建立连接,而是直接把我要发的数据报发给对方。所以UDP适用于一次传输数据量很少、对可靠性要求不高的或对实时性要求高的应用场景。正因为UDP无需建立类如三次握手的连接,而使得通信效率很高。

UDP的应用非常广泛,比如一些知名的应用层协议(SNMP、DNS)都是基于UDP的,想一想,如果SNMP使用的是TCP的话,每次查询请求都得进行三次握手,这个花费的时间估计是使用者不能忍受的,因为这会产生明显的卡顿。所以UDP就是SNMP的一个很好的选择了,要是查询过程发生丢包错包也没关系的,我们再发起一个查询就好了,因为丢包的情况不多,这样总比每次查询都卡顿一下更容易让人接受吧。

UDP通信的流程比较简单,因此要搭建这么一个常用的UDP通信框架也是比较简单的。以下是UDP的框架图。


由以上框图可以看出,客户端要发起一次请求,仅仅需要两个步骤(socket和sendto),而服务器端也仅仅需要三个步骤即可接收到来自客户端的消息(socket、bind、recvfrom)。

2. UDP程序设计常用函数

#include <sys/types.h>
#include <sys/socket.h>
int socket(int domain, int type, int protocol);

参数domain:用于设置网络通信的域,socket根据这个参数选择信息协议的族

Name                                     Purpose

AF_UNIX, AF_LOCAL          Local communication

AF_INET                           IPv4 Internet protocols          //用于IPV4

AF_INET6                         IPv6 Internet protocols          //用于IPV6

AF_IPX                             IPX - Novell protocols

AF_NETLINK                     Kernel user interface device

AF_X25                            ITU-T X.25 / ISO-8208 protocol

AF_AX25                          Amateur radio AX.25 protocol

AF_ATMPVC                      Access to raw ATM PVCs

AF_APPLETALK                 AppleTalk

AF_PACKET                      Low level packet interface

AF_ALG                           Interface to kernel crypto API

对于该参数我们仅需熟记AF_INET和AF_INET6即可

小插曲:PF_XXX和AF_XXX

我们在看Linux网络编程相关代码时会发现PF_XXX和AF_XXX会混着用,他们俩有什么区别呢?以下内容摘自《UNP》。

AF_前缀表示地址族(Address Family),而PF_前缀表示协议族(Protocol Family)。历史上曾有这样的想法:单个协议族可以支持多个地址族,PF_的值可以用来创建套接字,而AF_值用于套接字的地址结构。但实际上,支持多个地址族的协议族从来就没实现过,而头文件<sys/socket.h>中为一给定的协议定义的PF_值总是与此协议的AF_值相同。

所以我在实际编程时还是偏向于使用AF_XXX。

参数type(只列出最重要的三个):

SOCK_STREAM         Provides sequenced, reliable, two-way, connection-based byte streams.   //用于TCP

SOCK_DGRAM          Supports datagrams (connectionless, unreliable messages of a fixed maximum length). //用于UDP

SOCK_RAW              Provides raw network protocol access.  //RAW类型,用于提供原始网络访问

参数protocol:置0即可

返回值:成功:非负的文件描述符

失败:-1

#include <sys/types.h>
#include <sys/socket.h>
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
              const struct sockaddr *dest_addr, socklen_t addrlen);

第一个参数sockfd:正在监听端口的套接口文件描述符,通过socket获得

第二个参数buf:发送缓冲区,往往是使用者定义的数组,该数组装有要发送的数据

第三个参数len:发送缓冲区的大小,单位是字节

第四个参数flags:填0即可

第五个参数dest_addr:指向接收数据的主机地址信息的结构体,也就是该参数指定数据要发送到哪个主机哪个进程

第六个参数addrlen:表示第五个参数所指向内容的长度

返回值:成功:返回发送成功的数据长度

失败: -1

#include <sys/types.h>
#include <sys/socket.h>
ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                struct sockaddr *src_addr, socklen_t *addrlen);

第一个参数sockfd:正在监听端口的套接口文件描述符,通过socket获得

第二个参数buf:接收缓冲区,往往是使用者定义的数组,该数组装有接收到的数据

第三个参数len:接收缓冲区的大小,单位是字节

第四个参数flags:填0即可

第五个参数src_addr:指向发送数据的主机地址信息的结构体,也就是我们可以从该参数获取到数据是谁发出的

第六个参数addrlen:表示第五个参数所指向内容的长度

返回值:成功:返回接收成功的数据长度

失败: -1

#include <sys/types.h>
#include <sys/socket.h>
int bind(int sockfd, const struct sockaddr* my_addr, socklen_t addrlen);

第一个参数sockfd:正在监听端口的套接口文件描述符,通过socket获得

第二个参数my_addr:需要绑定的IP和端口

第三个参数addrlen:my_addr的结构体的大小

返回值:成功:0

失败:-1

#include <unistd.h>
int close(int fd);

close函数比较简单,只要填入socket产生的fd即可。

3. 搭建UDP通信框架

server:

 1 #include <stdio.h>
 2 #include <sys/types.h>
 3 #include <sys/socket.h>
 4 #include <netinet/in.h>
 5 #include <string.h>
 6
 7 #define SERVER_PORT 8888
 8 #define BUFF_LEN 1024
 9
10 void handle_udp_msg(int fd)
11 {
12     char buf[BUFF_LEN];  //接收缓冲区,1024字节
13     socklen_t len;
14     int count;
15     struct sockaddr_in clent_addr;  //clent_addr用于记录发送方的地址信息
16     while(1)
17     {
18         memset(buf, 0, BUFF_LEN);
19         len = sizeof(clent_addr);
20         count = recvfrom(fd, buf, BUFF_LEN, 0, (struct sockaddr*)&clent_addr, &len);  //recvfrom是拥塞函数,没有数据就一直拥塞
21         if(count == -1)
22         {
23             printf("recieve data fail!\n");
24             return;
25         }
26         printf("client:%s\n",buf);  //打印client发过来的信息
27         memset(buf, 0, BUFF_LEN);
28         sprintf(buf, "I have recieved %d bytes data!\n", count);  //回复client
29         printf("server:%s\n",buf);  //打印自己发送的信息给
30         sendto(fd, buf, BUFF_LEN, 0, (struct sockaddr*)&clent_addr, len);  //发送信息给client,注意使用了clent_addr结构体指针
31
32     }
33 }
34
35
36 /*
37     server:
38             socket-->bind-->recvfrom-->sendto-->close
39 */
40
41 int main(int argc, char* argv[])
42 {
43     int server_fd, ret;
44     struct sockaddr_in ser_addr;
45
46     server_fd = socket(AF_INET, SOCK_DGRAM, 0); //AF_INET:IPV4;SOCK_DGRAM:UDP
47     if(server_fd < 0)
48     {
49         printf("create socket fail!\n");
50         return -1;
51     }
52
53     memset(&ser_addr, 0, sizeof(ser_addr));
54     ser_addr.sin_family = AF_INET;
55     ser_addr.sin_addr.s_addr = htonl(INADDR_ANY); //IP地址,需要进行网络序转换,INADDR_ANY:本地地址
56     ser_addr.sin_port = htons(SERVER_PORT);  //端口号,需要网络序转换
57
58     ret = bind(server_fd, (struct sockaddr*)&ser_addr, sizeof(ser_addr));
59     if(ret < 0)
60     {
61         printf("socket bind fail!\n");
62         return -1;
63     }
64
65     handle_udp_msg(server_fd);   //处理接收到的数据
66
67     close(server_fd);
68     return 0;
69 }

client:

 1 #include <stdio.h>
 2 #include <sys/types.h>
 3 #include <sys/socket.h>
 4 #include <netinet/in.h>
 5 #include <string.h>
 6
 7 #define SERVER_PORT 8888
 8 #define BUFF_LEN 512
 9 #define SERVER_IP "172.0.5.182"
10
11
12 void udp_msg_sender(int fd, struct sockaddr* dst)
13 {
14
15     socklen_t len;
16     struct sockaddr_in src;
17     while(1)
18     {
19         char buf[BUFF_LEN] = "TEST UDP MSG!\n";
20         len = sizeof(*dst);
21         printf("client:%s\n",buf);  //打印自己发送的信息
22         sendto(fd, buf, BUFF_LEN, 0, dst, len);
23         memset(buf, 0, BUFF_LEN);
24         recvfrom(fd, buf, BUFF_LEN, 0, (struct sockaddr*)&src, &len);  //接收来自server的信息
25         printf("server:%s\n",buf);
26         sleep(1);  //一秒发送一次消息
27     }
28 }
29
30 /*
31     client:
32             socket-->sendto-->revcfrom-->close
33 */
34
35 int main(int argc, char* argv[])
36 {
37     int client_fd;
38     struct sockaddr_in ser_addr;
39
40     client_fd = socket(AF_INET, SOCK_DGRAM, 0);
41     if(client_fd < 0)
42     {
43         printf("create socket fail!\n");
44         return -1;
45     }
46
47     memset(&ser_addr, 0, sizeof(ser_addr));
48     ser_addr.sin_family = AF_INET;
49     //ser_addr.sin_addr.s_addr = inet_addr(SERVER_IP);
50     ser_addr.sin_addr.s_addr = htonl(INADDR_ANY);  //注意网络序转换
51     ser_addr.sin_port = htons(SERVER_PORT);  //注意网络序转换
52
53     udp_msg_sender(client_fd, (struct sockaddr*)&ser_addr);
54
55     close(client_fd);
56
57     return 0;
58 }

以上的框架用于一台主机不同端口的UDP通信,现象如下:

我们先建立server端,等待服务;然后我们建立client端请求服务。

server端:

client端:

自己主机跟自己通信不是很爽,我们想跟其他主机通信怎么搞?很简单,上面client的代码的第49行的注释打开,并注释掉下面那行,在宏定义里填入自己想通信的serverip就可以了。现象如下:

server端:

client端:

这样我们就实现了主机172.0.5.183和172.0.5.182之间的网络通信。

UDP通用框架搭建完成,我们可以利用该框架跟指定主机进行通信了。

如果想学习UDP的基础知识,以上的知识就足够了;如果想继续深入学习一下UDP SOCKET一些高级知识(奇技淫巧),可以花点时间往下看。

二、高级udp socket编程

1. udp的connect函数
什么?UDP也有conenct?connect不是用于TCP编程的吗?
是的,UDP网络编程中的确有connect函数,但它仅仅用于表示确定了另一方的地址,并没有其他含义。
有了以上认识后,我们可以知道UDP套接字有以下区分:
1)未连接的UDP套接字
2)已连接的UDP套接字

对于未连接的套接字,也就是我们常用的的UDP套接字,我们使用的是sendto/recvfrom进行信息的收发,目标主机的IP和端口是在调用sendto/recvfrom时确定的;

在一个未连接的UDP套接字上给两个数据报调用sendto函数内核将执行以下六个步骤:
1)连接套接字
2)输出第一个数据报
3)断开套接字连接
4)连接套接字
5)输出第二个数据报
6)断开套接字连接

对于已连接的UDP套接字,必须先经过connect来向目标服务器进行指定,然后调用read/write进行信息的收发,目标主机的IP和端口是在connect时确定的,也就是说,一旦conenct成功,我们就只能对该主机进行收发信息了。

已连接的UDP套接字给两个数据报调用write函数内核将执行以下三个步骤:
1)连接套接字
2)输出第一个数据报
3)输出第二个数据报

由此可以知道,当应用进程知道给同一个目的地址的端口号发送多个数据报时,显示套接字效率更高。

下面给出带connect函数的UDP通信框架


具体框架代码不再给出了,因为跟上面不带connect的代码大同小异,仅仅多出一个connect函数处理而已,下面给出处理conenct()的基本步骤。

void udp_handler(int s, struct sockaddr* to)
{
    char buf[1024] = "TEST UDP !";
    int n = 0;
    connect(s, to, sizeof(*to);

    n = write(s, buf, 1024);

    read(s, buf, n);
}

2. udp报文丢失问题
因为UDP自身的特点,决定了UDP会相对于TCP存在一些难以解决的问题。第一个就是UDP报文缺失问题。
在UDP服务器客户端的例子中,如果客户端发送的数据丢失,服务器会一直等待,直到客户端的合法数据过来。如果服务器的响应在中间被路由丢弃,则客户端会一直阻塞,直到服务器数据过来。

防止这样的永久阻塞的一般方法是给客户的recvfrom调用设置一个超时,大概有这么两种方法:
1)使用信号SIGALRM为recvfrom设置超时。首先我们为SIGALARM建立一个信号处理函数,并在每次调用前通过alarm设置一个5秒的超时。如果recvfrom被我们的信号处理函数中断了,那就超时重发信息;若正常读到数据了,就关闭报警时钟并继续进行下去。

2)使用select为recvfrom设置超时
设置select函数的第五个参数即可。

3. udp报文乱序问题
所谓乱序就是发送数据的顺序和接收数据的顺序不一致,例如发送数据的顺序为A、B、C,但是接收到的数据顺序却为:A、C、B。产生这个问题的原因在于,每个数据报走的路由并不一样,有的路由顺畅,有的却拥塞,这导致每个数据报到达目的地的顺序就不一样了。UDP协议并不保证数据报的按序接收。

解决这个问题的方法就是发送端在发送数据时加入数据报序号,这样接收端接收到报文后可以先检查数据报的序号,并将它们按序排队,形成有序的数据报。

4. udp流量控制问题
总所周知,TCP有滑动窗口进行流量控制和拥塞控制,反观UDP因为其特点无法做到。UDP接收数据时直接将数据放进缓冲区内,如果用户没有及时将缓冲区的内容复制出来放好的话,后面的到来的数据会接着往缓冲区放,当缓冲区满时,后来的到的数据就会覆盖先来的数据而造成数据丢失(因为内核使用的UDP缓冲区是环形缓冲区)。因此,一旦发送方在某个时间点爆发性发送消息,接收方将因为来不及接收而发生信息丢失。

解决方法一般采用增大UDP缓冲区,使得接收方的接收能力大于发送方的发送能力。

int n = 220 * 1024; //220kB

setsocketopt(sockfd, SOL_SOCKET, SO_RCVBUF, &n, sizeof(n));

这样我们就把接收方的接收队列扩大了,从而尽量避免丢失数据的发生。

参考书目:
《UNIX网络编程卷1》
《Linux网络编程》
《嵌入式Linux软件开发从入门到精通》

时间: 2024-08-23 22:52:15

Linux编程之UDP SOCKET全攻略的相关文章

Linux(CentOS)搭建SVN服务器全攻略

虽然在windows上搭建SVN很简单,但是效能却不高,这当然是和linux相比了.然而在linux上搭建SVN却非常繁琐,所以今天这篇文章就来一步一步教您如何在Centos上搭建SVN 安装#yum install subversion 1)创建svn用户#groupadd svn#useradd -g sky user//是将user加入到sky組內切换用户#su svn以后代码库的创建维护等,都用这个帐户来操作. 2)创建版本库编辑.bash_profile 加上如下配置SVN_HOME=

使用Linux(CentOS) 搭建SVN服务器全攻略

本文主要讲解Linux搭建SVN服务器,希望对大家的学习有所帮助. 因为现在在公司用到这个svn高大上工具,很方便管理一个部门所有人统一查看文件和共享,可以在线更新文档上.所以在这里我就很详细给大家操作搭建下服务以及使用. 1.什么是SVN(subversion) 什么是svn呢?简单的说,您可以把svn当作你的备份服务器,更好的是,他可以帮助您记住你共享文件和创建文件每次上传到这个服务器的档案内容.并且自动的赋予每次的变更一个版本. 2.为什么要用SVN (1). 备份工作档案的重要性,你永远

Linux一键安装web环境全攻略(阿里云ECS服务器)

摘自阿里云服务器官网,此处 一键安装包下载: 点此下载 安装须知 1.此安装包可在阿里云所有linux系统上部署安装,此安装包包含的软件及版本为: nginx:1.0.15.1.2.5.1.4.4 apache:2.2.22.2.4.2 mysql:5.1.73.5.5.35.5.6.15 php:5.3.18.5.4.23.5.5.7 php扩展:memcache.Zend Engine/ OPcache ftp:(yum/apt-get安装) phpwind:8.7 GBK phpmyadm

Linux一键安装web环境全攻略(阿里云服务器)

摘自阿里云服务器官网,此处 一键安装包下载: 点此下载 安装须知 1.此安装包可在阿里云所有linux系统上部署安装,此安装包包含的软件及版本为: nginx:1.0.15.1.2.5.1.4.4 apache:2.2.22.2.4.2 mysql:5.1.73.5.5.35.5.6.15 php:5.3.18.5.4.23.5.5.7 php扩展:memcache.Zend Engine/ OPcache ftp:(yum/apt-get安装) phpwind:8.7 GBK phpmyadm

Windows Socket五种I/O模型——代码全攻略(转)

Winsock 的I/O操作: 1. 两种I/O模式 阻塞模式:执行I/O操作完成前会一直进行等待,不会将控制权交给程序.套接字 默认为阻塞模式.可以通过多线程技术进行处理. 非阻塞模式:执行I/O操作时,Winsock函数会返回并交出控制权.这种模式使用 起来比较复杂,因为函数在没有运行完成就进行返回,会不断地返回 WSAEWOULDBLOCK错误.但功能强大.为了解决这个问题,提出了进行I/O操作的一些I/O模型,下面介绍最常见的三种: Windows Socket五种I/O模型——代码全攻

深入理解MongoDB(一)Linux下配置MongoDB全攻略

一 MongoDB简介 MongoDB是一个高性能,开源,无模式的文档型数据库,是当前NoSql数据库中比较热门的一种.它在许多场景下可用于替代传统的关系型数据库或键/值存储方式,Mongo使用C++开发.Mongo的官方网站地址是:http://www.mongodb.org/,读者可以在此获得更详细的信息. 特点: 它的特点是高性能.易部署.易使用,存储数据非常方便.主要功能特性有: 面向集合存储,易存储对象类型的数据. 模式自由. 支持动态查询. 支持完全索引,包含内部对象. 支持查询.

[深入浅出WP8.1(Runtime)]Socket编程之UDP协议

13.3 Socket编程之UDP协议 UDP协议和TCP协议都是Socket编程的协议,但是与TCP协议不同,UDP协议并不提供超时重传,出错重传等功能,也就是说其是不可靠的协议.UDP适用于一次只传送少量数据.对可靠性要求不高的应用环境.既然 UDP 是一种不可靠的网络协议,那么还有什么使用价值或必要呢?其实不然,在有些情况下UDP协议可能会变得非常有用.因为UDP具有TCP所望尘莫及的速度优势.虽然TCP协议中植入了各种安全保障功能,但是在实际执行的过程中会占用大量的系统开销,无疑使速度受

Emacs安装配置全攻略之一编译安装简单配置

/******************************************************************************************************************************************/ 原创作品,转载时请务必以超链接形式标明文章原始出处:http://blog.csdn.net/gqb_driver/article/details/29407717,作者:gqb666 /***************

独孤九篇之运维进阶:文件共享服务全攻略完结篇

一.了解一下 1.NFS NFS(Network File System)即网络文件系统,是FreeBSD支持的文件系统中的一种,它允许网络中的计算机之间通过TCP/IP网络共享资源.在NFS的应用中,本地NFS的客户端应用可以透明地读写位于远端NFS服务器上的文件,就像访问本地文件一样. 好处: 节省本地存储空间,将常用的数据存放在一台NFS服务器上且可以通过网络访问,那么本地终端将可以减少自身存储空间的使用.用户不需要在网络中的每个机器上都建有Home目录,Home目录可以放在NFS服务器上