逻辑回归的正则化

我们可以规范logistic回归以类似的方式,我们对线性回归。作为一个结果,我们可以避免过拟合。下面的图像显示了正则化函数,用粉红色的线显示出来,是不太可能过度拟合非正则的蓝线表示功能:

成本函数

我们可以使这个方程的最后添加一个项:

第二个和,意思是明确排除二次项。

时间: 2024-10-24 06:12:21

逻辑回归的正则化的相关文章

逻辑回归原理小结

逻辑回归是一个分类算法,它可以处理二元分类以及多元分类.虽然它名字里面有"回归"两个字,却不是一个回归算法.那为什么有"回归"这个误导性的词呢?个人认为,虽然逻辑回归是分类模型,但是它的原理里面却残留着回归模型的影子,本文对逻辑回归原理做一个总结. 1. 从线性回归到逻辑回归 我们知道,线性回归的模型是求出输出特征向量Y和输入样本矩阵X之间的线性关系系数\(\theta\),满足\(\mathbf{Y = X\theta}\).此时我们的Y是连续的,所以是回归模型.

线性回归,逻辑回归的学习(包含最小二乘法及极大似然函数等)

博文参考了以下两位博主的文章:http://blog.csdn.net/lu597203933/article/details/45032607,http://blog.csdn.net/viewcode/article/details/8794401 回归问题的前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数.然后利用这个模型去预测/分类新的数据. 1. 线性回归 假设 特征 和 结果 都满足线性.即不大于一次方.这个是针对 收集的数据

对线性回归、逻辑回归、各种回归的概念学习

http://blog.csdn.net/viewcode/article/details/8794401 回归问题的条件/前提: 1) 收集的数据 2) 假设的模型,即一个函数,这个函数里含有未知的参数,通过学习,可以估计出参数.然后利用这个模型去预测/分类新的数据. 1. 线性回归 假设 特征 和 结果 都满足线性.即不大于一次方.这个是针对 收集的数据而言.收集的数据中,每一个分量,就可以看做一个特征数据.每个特征至少对应一个未知的参数.这样就形成了一个线性模型函数,向量表示形式: 这个就

4.机器学习之逻辑回归算法

理论上讲线性回归模型既可以用于回归,也可以用于分类.解决回归问题,可以用于连续目标值的预测.但是针对分类问题,该方法则有点不适应,因为线性回归的输出值是不确定范围的,无法很好的一一对应到我们的若干分类中.即便是一个二分类,线性回归+阈值的方式,已经很难完成一个鲁棒性很好的分类器了.为了更好的实现分类,逻辑回归诞生了.逻辑回归(Logistic Regression)主要解决二分类问题,用来表示某件事情发生的可能性.逻辑回归是假设数据服从Bernoulli分布的,因此LR也属于参数模型,他的目的也

逻辑回归(logistic-regression)之梯度下降法详解

引言 逻辑回归常用于预测疾病发生的概率,例如因变量是是否恶性肿瘤,自变量是肿瘤的大小.位置.硬度.患者性别.年龄.职业等等(很多文章里举了这个例子,但现代医学发达,可以通过病理检查,即获取标本放到显微镜下观察是否恶变来判断):广告界中也常用于预测点击率或者转化率(cvr/ctr),例如因变量是是否点击,自变量是物料的长.宽.广告的位置.类型.用户的性别.爱好等等. 本章主要介绍逻辑回归算法推导.梯度下降法求最优值的推导及spark的源码实现. 常规方法 一般回归问题的步骤是: 1. 寻找预测函数

逻辑回归(LR)总结复习

摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 最基本的LR分类器适合于对两分类(类0,类1)目标进行分类:这个模型以样本特征的线性组合sigma(theta * Xi)作为自变量,使用logistic函数将自变量映射到(0,1)上. 其中logistic函数(sigmoid函数为): 函数图形为: 从而得到LR的模型函数为:,其中待定. 2.算法推导 建立的似然函数: 对上述函数求对数: 做下函数变换: 通过梯度下

机器学习 (三) 逻辑回归 Logistic Regression

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交

【机器学习基础】核逻辑回归

将软间隔支持向量机看做正则化模型 上一小节中我们介绍了软间隔支持向量机,该模型允许有错分类数据的存在,从而使模型对数据有更好的适应性,有效避免过拟合的问题. 现在我们回顾一下松弛变量ξn,我们用ξn来记录违反分类边界的数据到边界的距离. 我们可以从另外一个角度,考虑一下ξn的计算: 对于任何一个点,如果该点违反了边界,那么ξn记录了其到边界的距离:如果没有违反,ξn为0. 所以我们可以用下面这个式子来表示: 与正则化模型的比较 在正则化中,我们用w的长度来控制复杂度,并且我们希望某个误差度量最小

逻辑回归LR

逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法.这个算法可能不想随机森林.SVM.神经网络.GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看这个算法,因为它有几个优点是那几个算法无法达到的,一是逻辑回归的算法已经比较成熟,预测较为准确:二是模型求出的系数易于理解,便于解释,不属于黑盒模型,尤其在银行业,80%的预测是使用逻辑回归:三是结果是概率值,可以做ranking model:四是训练快.当然它也有缺点,分类较多的y都不是很适用.下