图的深度优先遍历&广度优先遍历

1.什么是图的搜索?

  指从一个指定顶点可以到达哪些顶点

2.图的两种存储结构

  (1)邻接矩阵

    原理就是用两个数组,一个一维数组保存顶点集,一个二维数组(邻接矩阵)保存边集。

  (2)邻接表

2.深度优先遍历

时间: 2024-10-10 07:26:35

图的深度优先遍历&广度优先遍历的相关文章

图的邻接表存储表示,图的深度优先和广度优先遍历

1 #include<stdio.h> 2 #include<stdlib.h> 3 4 #define MAX_VERTAX_SIZE 20 5 #define OK 1 6 #define ERROR 0 7 8 typedef int Status; 9 typedef char ElemType; 10 11 typedef struct EageNode{ 12 int adjacentVertax; 13 struct EageNode* nextAdjacentVer

存储结构与邻接矩阵,深度优先和广度优先遍历及Java实现

如果看完本篇博客任有不明白的地方,可以去看一下<大话数据结构>的7.4以及7.5,讲得比较易懂,不过是用C实现 下面内容来自segmentfault 存储结构 要存储一个图,我们知道图既有结点,又有边,对于有权图来说,每条边上还带有权值.常用的图的存储结构主要有以下二种: 邻接矩阵 邻接表 邻接矩阵 我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法. 我们假设A是这个二维数组

数据结构之深度优先,广度优先遍历

深度优先和广度优先遍历在树和图中应用最为普遍,思想也类似,因此放到一起来总结. 二叉树的深度优先广度优先遍历: 一棵二叉树(2,(2(3,4),3(4,5))),这是一棵满二叉树,一共有7个节点,根节点2,深度为3 数据结构定义如下: class Node: def __init__(self, value=None, left = None, right = None): self.value = value self.left = left self.right = right 先根遍历 d

树的深度优先与广度优先遍历

简述树的深度优先及广度优先遍历算法,并说明非递归实现. 原题出自百度的笔试: 当时我看到这个题目的时候,已经完全记不得非递归算法该怎么实现了,后来查阅了一下,要用到两个辅助的数据结构: 深度优先遍历--->栈: 广度优先遍历--->队列: 这里以二叉树为例来实现. import java.util.ArrayDeque; public class BinaryTree { static class TreeNode{ int value; TreeNode left; TreeNode rig

图的邻接表+深度优先遍历+广度优先遍历

1 /** 2 无向图的邻接表存储 3 深度优先遍历递归 4 广度优先遍历递归+非递归 5 */ 6 #include <stdio.h> 7 #include <string.h> 8 #include <malloc.h> 9 #define N 5 10 #define MAX 50 11 typedef struct A{ 12 int adjvex; 13 struct A* nextArc; 14 }Arc; 15 typedef struct node{

二叉树遍历(前序、中序、后序、层次、深度优先、广度优先遍历)

二叉树是一种非常重要的数据结构,很多其它数据结构都是基于二叉树的基础演变而来的.对于二叉树,有深度遍历和广度遍历,深度遍历有前序.中序以及后序三种遍历方法,广度遍历即我们平常所说的层次遍历.因为树的定义本身就是递归定义,因此采用递归的方法去实现树的三种遍历不仅容易理解而且代码很简洁,而对于广度遍历来说,需要其他数据结构的支撑,比如堆了.所以,对于一段代码来说,可读性有时候要比代码本身的效率要重要的多. 四种主要的遍历思想为: 前序遍历:根结点 ---> 左子树 ---> 右子树 中序遍历:左子

【数据结构-图】图的建立以及广度优先遍历算法

本文利用邻接表的方法将图进行了表示,并且利用广度优先遍历方法对图进行遍历 下面是一个图的示例: 代码如下: #include<iostream> using namespace std; typedef int VexType; typedef struct Arcnode{ VexType data; struct Arcnode *nextarc; }ArcNode; typedef struct Vexnode { VexType data; ArcNode *firstarc; }Vn

二叉树的深度优先和广度优先遍历

深度优先搜索算法(Depth First Search),是搜索算法的一种.是沿着树的深度遍历树的节点,尽可能深的搜索树的分支. 当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点.这一过程一直进行到已发现从源节点可达的所有节点为止.如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止. 二叉树的深度优先遍历和先序遍历结果一样的. 思想是采用栈, 首先将根结点压入栈,如果栈不为空,而后出栈并输出当前结点中值,而后先把右子树

js深度优先和广度优先遍历语法树

在遍历html语法树中用到了深度优先遍历和广度优先遍历,就自己用js实现了下 //广度遍历html节点 function breadthSearch(item, childProp){ const nodeList=[item] let index=0; while (index<nodeList.length){ const node=nodeList[index++]; if(node[childProp]){ for(let k in node[childProp]){ nodeList.

图的深度优先和广度优先搜索算法

  本文取自<数据结构与算法>(C语言版)(第三版),出版社是清华大学出版社. 1.图的深度优先搜索算法: 图的深度优先搜索算法的基本思想是:从图G的某个顶点V0出发,访问V0,然后选择一个与V0相邻且未被访问过的顶点Vi访问,再从Vi出发选择一个与Vi相邻且未被访问的顶点Vj进行访问,依此下去,直到当前被访问过的顶点的所有邻接顶点都已被访问,则按相反顺序退回到已访问的顶点序列中,如果其中的顶点还存在未被访问的相邻顶点W,则从W出发,按相同的方法继续访问.直到图中的所有顶点均被访问. 无向图的