Linux的I/O多路复用机制之--epoll

什么是epoll

按照man手册的说法:是为处理大批量句柄而作了改进的poll。它几乎具备了之前所说的一切优点,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。

epoll的相关系统调用

int epoll_create(int size);

创建一个epoll的句柄。自从linux2.6.8之后,size参数是被忽略的。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

epoll的事件注册函数,它不同于select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。

第一个参数是epoll_create()的返回值。

第二个参数表示动作,用三个宏来表示:

EPOLL_CTL_ADD:注册新的fd到epfd中;

EPOLL_CTL_MOD:修改已经注册的fd的监听事件;

EPOLL_CTL_DEL:从epfd中删除一个fd;

第三个参数是需要监听的fd。

第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:

//保存触发事件的某个文件描述符相关的数据(与具体使用方式有关)

typedef union epoll_data {
    void *ptr;
    int fd;
    __uint32_t u32;
    __uint64_t u64;
} epoll_data_t;
 //感兴趣的事件和被触发的事件
struct epoll_event {
    __uint32_t events; /* Epoll events */
    epoll_data_t data; /* User data variable */
};

events可以是以下几个宏的集合:

EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);

EPOLLOUT:表示对应的文件描述符可以写;

EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);

EPOLLERR:表示对应的文件描述符发生错误;

EPOLLHUP:表示对应的文件描述符被挂断;

EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。

EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里

int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

收集在epoll监控的事件中已经发送的事件。参数events是分配好的epoll_event结构体数组,epoll将会把发生的事件赋值到events数组中(events不可以是空指针,内核只负责把数据复制到这个events数组中,不会去帮助我们在用户态中分配内存)。maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。如果函数调用成功,返回对应I/O上已准备好的文件描述符数目,如返回0表示已超时。

epoll工作原理

epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。

另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。

epoll的2种工作方式-水平触发(LT)和边缘触发(ET)

假如有这样一个例子:

1. 我们已经把一个用来从管道中读取数据的文件句柄(RFD)添加到epoll描述符

2. 这个时候从管道的另一端被写入了2KB的数据

3. 调用epoll_wait(2),并且它会返回RFD,说明它已经准备好读取操作

4. 然后我们读取了1KB的数据

5. 调用epoll_wait(2)......

Edge Triggered工作模式:

如果我们在第1步将RFD添加到epoll描述符的时候使用了EPOLLET标志,那么在第5步调用epoll_wait(2)之后将有可能会挂起,因为剩余的数据还存在于文件的输入缓冲区内,而且数据发出端还在等待一个针对已经发出数据的反馈信息。只有在监视的文件句柄上发生了某个事件的时候 ET 工作模式才会汇报事件。因此在第5步的时候,调用者可能会放弃等待仍在存在于文件输入缓冲区内的剩余数据。在上面的例子中,会有一个事件产生在RFD句柄上,因为在第2步执行了一个写操作,然后,事件将会在第3步被销毁。因为第4步的读取操作没有读空文件输入缓冲区内的数据,因此我们在第5步调用  epoll_wait(2)完成后,是否挂起是不确定的。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。最好以下面的方式调用ET模式的epoll接口,在后面会介绍避免可能的缺陷。

i    基于非阻塞文件句柄

ii   只有当read(2)或者write(2)返回EAGAIN时才需要挂起,等待。但这并不是说每次read()时都需要循环读,直到读到产生一个EAGAIN才认为此次事件处理完成,当read()返回的读到的数据长度小于请求的数据长度时,就可以确定此时缓冲中已没有数据了,也就可以认为此事读事件已处理完成。

Level Triggered 工作模式

相反的,以LT方式调用epoll接口的时候,它就相当于一个速度比较快的poll(2),并且无论后面的数据是否被使用,因此他们具有同样的职能。因为即使使用ET模式的epoll,在收到多个chunk的数据的时候仍然会产生多个事件。调用者可以设定EPOLLONESHOT标志,在 epoll_wait(2)收到事件后epoll会与事件关联的文件句柄从epoll描述符中禁止掉。因此当EPOLLONESHOT设定后,使用带有  EPOLL_CTL_MOD标志的epoll_ctl(2)处理文件句柄就成为调用者必须作的事情。

LT(level triggered)是epoll缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你 的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表.

ET (edge-triggered)是高速工作方式,只支持no-block socket,它效率要比LT更高。ET与LT的区别在于,当一个新的事件到来时,ET模式下当然可以从epoll_wait调用中获取到这个事件,可是如果这次没有把这个事件对应的套接字缓冲区处理完,在这个套接字中没有新的事件再次到来时,在ET模式下是无法再次从epoll_wait调用中获取这个事件的。而LT模式正好相反,只要一个事件对应的套接字缓冲区还有数据,就总能从epoll_wait中获取这个事件。

因此,LT模式下开发基于epoll的应用要简单些,不太容易出错。而在ET模式下事件发生时,如果没有彻底地将缓冲区数据处理完,则会导致缓冲区中的用户请求得不到响应。

epoll的优点:

1.支持一个进程打开大数目的socket描述符(FD)

select 最不能忍受的是一个进程所打开的FD是有一定限制的,由FD_SETSIZE设置,默认值是2048。对于那些需要支持的上万连接数目的IM服务器来说显然太少了。不过 epoll则没有这个限制,它所支持的FD上限是最大可以打开文件的数目,这个数字一般远大于2048。

2.IO效率不随FD数目增加而线性下降

传统的select/poll另一个致命弱点就是当你拥有一个很大的socket集合,不过由于网络延时,任一时间只有部分的socket是"活跃"的,但是select/poll每次调用都会线性扫描全部的集合,导致效率呈现线性下降。但是epoll不存在这个问题,它只会对"活跃"的socket进行操作---这是因为在内核实现中epoll是根据每个fd上面的callback函数实现的。那么,只有"活跃"的socket才会主动的去调用 callback函数,其他idle状态socket则不会。

3.使用mmap加速内核与用户空间的消息传递

这点实际上涉及到epoll的具体实现了。无论是select,poll还是epoll都需要内核把FD消息通知给用户空间,如何避免不必要的内存拷贝就很重要,在这点上,epoll是通过内核于用户空间mmap同一块内存实现的。

4.内核微调

(不太懂!)

epoll网络服务器实例

服务器端:

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/epoll.h>
#include <string.h>

#define _MAX_LISTEN_ 5
#define _MAX_SIZE_ 10
#define _BUF_SIZE_ 1024

void Usage(const char* proc)
{
    printf("%s usage: [ip] [port]\n", proc);
}

int startup(const char* _ip, const char* _port)
{
    int sock = socket(AF_INET, SOCK_STREAM, 0);
    if(sock < 0)
    {
        perror("socket");
        exit(1);
    }

    int opt = 1;
    if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)) < 0) 
    {
        perror("setsockopt");
        exit(2);
    }  

    struct sockaddr_in local;
    local.sin_family = AF_INET;
    local.sin_port = htons(atoi(_port));
    local.sin_addr.s_addr = inet_addr(_ip);
    if(bind(sock, (struct sockaddr*)&local, sizeof(local)) < 0)
    {
        perror("bind");
        exit(3);
    }

    if(listen(sock, _MAX_LISTEN_) < 0)
    {
        perror("listen");
        exit(4);
    }

    return sock;
}

int main(int argc, char* argv[])
{
    if(argc != 3)
    {
        Usage(argv[0]);
        return 1;
    }

    int listen_sock = startup(argv[1], argv[2]);

    int epoll_fd = epoll_create(128); 
    if(epoll_fd < 0)
    {
        perror("epoll_create");
        close(listen_sock);
        exit(5);
    }

    struct epoll_event ev, revent[_MAX_SIZE_];
    ev.data.fd = listen_sock;
    ev.events = EPOLLIN;

    if(epoll_ctl(epoll_fd, EPOLL_CTL_ADD, listen_sock, &ev) < 0)
    {
        perror("epoll_ctl add error");
        exit(6);
    }

    int timeout = -1;
    while(1)
    {
        int revent_len = sizeof(revent)/sizeof(revent[0]);
        int epoll_n = epoll_wait(epoll_fd, revent, revent_len, timeout); 
        switch(epoll_n)
        {
            case -1:
                perror("epoll_wait");
                exit(7);
                break;
            case 0:
                printf("time out\n");
                break;
            default:
                {
                    int index = 0;
                    int new_fd = -1;
                    for(; index < epoll_n; ++index)
                    {
                        new_fd = revent[index].data.fd;
                        if(new_fd == listen_sock) //new accpet
                        {
                            struct sockaddr_in peer;
                            socklen_t len = sizeof(peer);
                            new_fd = accept(listen_sock, (struct sockaddr* )&peer, &len);
                            if(new_fd < 0)
                            {
                                perror("accept");
                                exit(8);
                            }
                            printf("get a new client %d -> ip: %s port: %d\n", new_fd, inet_ntoa(peer.sin_addr), ntohs(peer.sin_port));

                            ev.data.fd = new_fd;
                            ev.events = EPOLLIN;
                            if(epoll_ctl(epoll_fd, EPOLL_CTL_ADD, new_fd, &ev) < 0)
                            {
                                perror("epoll_ctl add error");
                                close(new_fd);
                                exit(9);
                            }

                            continue;
                        }
                        if(revent[index].events & EPOLLIN) //new read
                        {
                            char buf[_BUF_SIZE_];
                            int _s = read(new_fd, buf, sizeof(buf)-1);
                            if(_s > 0)
                            {
                                buf[_s] = ‘\0‘;
                                printf("client %d # %s\n",new_fd, buf);
                            }
                            else if(_s == 0)
                            {
                                printf("client %d is closed\n", new_fd);
                                close(new_fd);
                                epoll_ctl(epoll_fd, EPOLL_CTL_DEL, new_fd, NULL);
                            }
                            else
                            {
                                perror("read");
                            }
                        }

                        ev.data.fd = new_fd;
                        ev.events = EPOLLOUT;
                        if(epoll_ctl(epoll_fd, EPOLL_CTL_MOD, new_fd, &ev) < 0)
                        {
                            perror("epoll_ctl mod error");
                            close(new_fd);
                            exit(10);
                        }

                        if(revent[index].events & EPOLLOUT)
                        {
                            const char* msg = "Hello World ^_^";
                            write(new_fd, msg, strlen(msg));
                            close(new_fd);
                            epoll_ctl(epoll_fd, EPOLL_CTL_DEL, new_fd, NULL);
                        }

                    }
                }
        }
    }
    return 0;
}

客户端:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>

void Usage(const char* proc)
{
    printf("usage: %s [ip] [port]\n", proc);
}

int main(int argc, char* argv[])
{
    if(argc != 3)
    {
        Usage(argv[0]);
        exit(1);
    }
    
    int conn_sock = socket(AF_INET, SOCK_STREAM, 0);

    struct sockaddr_in conn;
    conn.sin_family = AF_INET;
    conn.sin_port = htons(atoi(argv[2]));
    conn.sin_addr.s_addr = inet_addr(argv[1]);

    if(connect(conn_sock, (const struct sockaddr*)&conn, sizeof(conn)) < 0)
    {
        perror("connect");
        exit(2);
    }

    char buf[1024];
    memset(buf, ‘\0‘, sizeof(buf));
    while(1)
    {
        printf("please enter # ");
        fflush(stdout);

        ssize_t _s = read(0, buf, sizeof(buf)-1);
        if(_s > 0)
        {
            buf[_s-1] = ‘\0‘;
            write(conn_sock, buf, strlen(buf));
        }

        _s = read(conn_sock, buf, sizeof(buf)-1);
        if(_s > 0)
        {
            buf[_s] = ‘\0‘;
            printf("sever # %s\n", buf);
        }

    }

    return 0;
}

程序演示:

浏览器

客户端

select/poll/epoll优缺点分析

select

select本质是通过设置或检查存放fd标志位的数据结构来进行下一步的处理。会阻塞,直到有一个或多个I/O就绪。

监视的文件描述符分为三类set,每一种对应不同的事件。readfds、writefds和exceptfds是指向描述符集的指针。

readfds列出的文件描述符被监视是否有数据可供读取。(可读)

writefds列出的文件描述符被监视是否有写入操作完成。(可写)

exceptfds列出的文件描述符被监视是否发生异常,或无法控制的数据是否可用。(仅仅用于socket)

这三类set为NULL时,select()不监视其对应的该类事件。

select()成功返回时,每组set都被修改以使它只包含准备好的I/O描述符。

特点:

(a)单个进程可监视的fd数量被限制;

(b)需要维护一个用来存放大量fd的数据结构,这样会使用户空间和内核空间在传递该结构时复制开销大;

(c)对fd进行扫描是线性的,fd剧增后,IO效率较低,因为每次调用都对fd进行线性扫描遍历,所以随着fd的增加会造成遍历速度慢的性能问题;

(d)内核需要将消息传递用户空间,需要内核拷贝动作;

(e)最大支持1024个fd。

poll

和select基本一样,除了poll没有使用低效的三个基于位的文件描述符set,而是采用了一个单独的结构体pollfd数组,由fds指针指向这个组。

特点

(a)它将用户传入的数组拷贝到内核空间,然后查询每个fd对应的设备状态,如果设备就绪则在设备等待队列中加入一项并继续遍历。如果遍历完所有fd后没有发现就绪设备,则挂起当前进程,直到设备就绪或主动超时,被唤醒后它又要再次遍历fd;

(b)没有最大连接数的限制,原因是它是基于链表来存储的;

(c)大量的fd的数组被整体复制于用户态和内核地址空间;

(d)对fd的扫描是线性的;

(e)水平触发:如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd。

epoll

介绍如上

特点:

(a)支持一个进程打开最大数目的socket描述符(FD)。所支持的FD上限是最大可以打开文件的数组,在1GB机器上,大约为10万左右;

(b)IO效率不随fd数目增加而线性下降;(select/poll每次调用都会线性扫描全部的集合;epoll中只有活跃的socket才会主动调用callback函数,其他idle状态的socket则不会)

(c)使用mmap减少复制开销,加速内核与用户空间的消息传递;(epoll是通过内核和用户空间共享同一块内存实现的)

(d)支持边缘触发,只告诉进程中哪些fd刚刚变为就绪态,并且只通知一次。(epoll使用事件的就绪通知方式,通过epoll_ctl函数注册fd。一旦该fd就绪,内核就会采用类似callback的回调机制激活该fd,epoll_wait便可以收到通知。)

时间: 2024-10-15 02:22:49

Linux的I/O多路复用机制之--epoll的相关文章

Linux的I/O多路复用机制之--select&poll

1. Linux下的五种I/O模型 1)阻塞I/O(blocking I/O)2)非阻塞I/O (nonblocking I/O)3) I/O复用(select 和poll) (I/O multiplexing)4)信号驱动I/O (signal driven I/O (SIGIO))5)异步I/O (asynchronous I/O (the POSIX aio_functions)) (前四种都是同步,只有最后一种才是异步IO.) 五种I/O模型的比较: 2.多路复用--select 系统提

Linux中的select,poll,epoll模型

Linux中的 select,poll,epoll 都是IO多路复用的机制. select select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被内核修改标志位,使得进程可以获得这些文件描述符从而进行后续的读写操作.select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点,事实上从现在看来,这也是它所剩不多的优点之一.select的一个缺点在于单个进程能够监视的文件描

多路复用select和epoll的区别(转)

先说下本文框架,先是问题引出,然后概括两个机制的区别和联系,最后介绍每个接口的用法 一.问题引出 联系区别 问题的引出,当需要读两个以上的I/O的时候,如果使用阻塞式的I/O,那么可能长时间的阻塞在一个描述符上面,另外的描述符虽然有数据但是不能读出来,这样实时性不能满足要求,大概的解决方案有以下几种: 1.使用多进程或者多线程,但是这种方法会造成程序的复杂,而且对与进程与线程的创建维护也需要很多的开销.(Apache服务器是用的子进程的方式,优点可以隔离用户) 2.用一个进程,但是使用非阻塞的I

Linux下的I/O复用与epoll详解

前言 I/O多路复用有很多种实现.在linux上,2.4内核前主要是select和poll,自Linux 2.6内核正式引入epoll以来,epoll已经成为了目前实现高性能网络服务器的必备技术.尽管他们的使用方法不尽相同,但是本质上却没有什么区别.本文将重点探讨将放在EPOLL的实现与使用详解. 为什么会是EPOLL select的缺陷 高并发的核心解决方案是1个线程处理所有连接的“等待消息准备好”,这一点上epoll和select是无争议的.但select预估错误了一件事,当数十万并发连接存

IO多路复用机制(转)

1.简介 希望通过这篇文章,可以回答以下几个问题? 为什么需要IO多路复用? 什么是IO多路复用机制? IO多路复用的机制该怎么使用? epoll比select/poll相比,优势在哪里? 在了解I/O多路复用之前,先来了解流的概念. 1.1流的概念 一个流可以文件.socket.pipe等可以进行IO操作的内核对象.不管是文件,还是套接字,还是管道,我们都可以把他们看作流. 从流中读取数据或者写入数据到流中,可能存在这样的情况:读取数据时,流中还没有数据:写入数据时,流中数据已经满了,没有空间

多路复用io接口-epoll

多路复用io接口-epoll的使用. 服务端使用epoll接口处理多个客户的服务请求. 例: 服务端代码 myepoll.c #include <stdio.h> #include <stdlib.h> #include <errno.h> #include <string.h> #include <sys/types.h> #include <netinet/in.h> #include <sys/socket.h> #

Linux的分段和分页机制

1 基于80x86的Linux分段机制 80386的两种工作模式:80386的工作模式包括实地址模式和虚地址模式(保护模式).Linux主要工作在保护模式下. 在保护模式下,80386虚地址空间可达16K个段,每段大小可变,最大达4GB.逻辑地址到线性地址的转换由80386分段机制管理.段寄存器CS.DS.ES.SS.FS或GS各标识一个段.这些段寄存器作为段选择器,用来选择该段的描述符. 分段逻辑地址到线性地址转换图: Linux对80386的分段机制使用得很有限,因为Linux的设计目标是支

Linux x86_64 APIC中断路由机制分析

不同CPU体系间的中断控制器工作原理有较大差异,本文是<Linux mips64r2 PCI中断路由机制分析>的姊妹篇,主要分析Broadwell-DE X86_64 APIC中断路由原理.中断配置和处理过程,并尝试回答如下问题: 为什么x86中断路由使用IO-APIC/LAPIC框架,其有什么价值? pin/irq/vector的区别.作用,取值范围和分配机制? x86_64 APIC关键概念 Pin 此处的pin特指APIC的中断输入引脚,与内外部设备的中断输入信号相连.从上图中可以看出,

Linux socket编程的心跳机制总结

Linux socket编程的心跳机制总结 我写这篇文章的目的是想总结一下心跳机制的使用,因为最近两个项目的TCP通信中都使用了这个方法,感觉用法好诗比较经典的,所以拿出来与大家共享. 什么是心跳机制 心跳机制就是当客户端与服务端建立连接后,每隔几分钟发送一个固定消息给服务端,服务端收到后回复一个固定消息给客户端,如果服务端几分钟内没有收到客户端消息,则视客户端断开.发送方可以是客户端和服务端,看具体需求. 为什么要使用 我们都知道在TCP这种长连接情况下下,有可能有一大段时间是没有数据往来的,