Java并发(6):concurrent包中的Copy-On-Write容器

  Copy-On-Write简称COW,是一种用于程序设计中的优化策略。其基本思路是,从一开始大家都在共享同一个内容,当某个人想要修改这个内容的时候,才会真正把内容Copy出去形成一个新的内容然后再改,这是一种延时懒惰策略。从JDK1.5开始Java并发包里提供了两个使用CopyOnWrite机制实现的并发容器,它们是CopyOnWriteArrayList和CopyOnWriteArraySet。CopyOnWrite容器非常有用,可以在非常多的并发场景中使用到。

一. CopyOnWrite容器

  CopyOnWrite容器即写时复制的容器。通俗的理解是当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容器进行Copy,复制出一个新的容器,然后新的容器里添加元素,添加完元素之后,再将原容器的引用指向新的容器。这样做的好处是我们可以对CopyOnWrite容器进行并发的读,而不需要加锁,因为当前容器不会添加任何元素。所以CopyOnWrite容器也是一种读写分离的思想,读和写不同的容器。

二. CopyOnWriteArrayList的实现原理

  在使用CopyOnWriteArrayList之前,我们先阅读其源码了解下它是如何实现的。以下代码是向ArrayList里添加元素,可以发现在添加的时候是需要加锁的,否则多线程写的时候会Copy出N个副本出来。

 1 public boolean add(T e) {
 2     final ReentrantLock lock = this.lock;
 3     lock.lock();
 4     try {
 5         Object[] elements = getArray();
 6         int len = elements.length;
 7         // 复制出新数组
 8         Object[] newElements = Arrays.copyOf(elements, len + 1);
 9         // 把新元素添加到新数组里
10         newElements[len] = e;
11         // 把原数组引用指向新数组
12         setArray(newElements);
13         return true;
14     } finally {
15         lock.unlock();
16     }
17 }
18
19 final void setArray(Object[] a) {
20     array = a;
21 }

  读的时候不需要加锁,如果读的时候有多个线程正在向ArrayList添加数据,读还是会读到旧的数据,因为写的时候不会锁住旧的ArrayList。

1 public E get(int index) {
2     return get(getArray(), index);
3 }

  JDK中并没有提供CopyOnWriteMap,我们可以参考CopyOnWriteArrayList来实现一个,基本代码如下:

 1 import java.util.Collection;
 2 import java.util.Map;
 3 import java.util.Set;
 4
 5 public class CopyOnWriteMap<K, V> implements Map<K, V>, Cloneable {
 6     private volatile Map<K, V> internalMap;
 7
 8     public CopyOnWriteMap() {
 9         internalMap = new HashMap<K, V>();
10     }
11
12     public V put(K key, V value) {
13
14         synchronized (this) {
15             Map<K, V> newMap = new HashMap<K, V>(internalMap);
16             V val = newMap.put(key, value);
17             internalMap = newMap;
18             return val;
19         }
20     }
21
22     public V get(Object key) {
23         return internalMap.get(key);
24     }
25
26     public void putAll(Map<? extends K, ? extends V> newData) {
27         synchronized (this) {
28             Map<K, V> newMap = new HashMap<K, V>(internalMap);
29             newMap.putAll(newData);
30             internalMap = newMap;
31         }
32     }
33 }

  只要了解了CopyOnWrite机制,我们可以实现各种CopyOnWrite容器。

三. CopyOnWrite的应用场景及例子

  CopyOnWrite并发容器用于读多写少的并发场景。比如白名单,黑名单,商品类目的访问和更新场景。

  假如我们有一个搜索网站,用户在这个网站的搜索框中,输入关键字搜索内容,但是某些关键字不允许被搜索。这些不能被搜索的关键字会被放在一个黑名单当中,黑名单每天晚上更新一次。当用户搜索时,会检查当前关键字在不在黑名单当中,如果在,则提示不能搜索。实现代码如下:

 1 package com.ifeve.book;
 2
 3 import java.util.Map;
 4 import com.ifeve.book.forkjoin.CopyOnWriteMap;
 5
 6 /**
 7  * 黑名单服务
 8  */
 9 public class BlackListServiceImpl {
10
11     private static CopyOnWriteMap<String, Boolean> blackListMap = new CopyOnWriteMap<String, Boolean>(
12             1000);
13
14     public static boolean isBlackList(String id) {
15         return blackListMap.get(id) == null ? false : true;
16     }
17
18     public static void addBlackList(String id) {
19         blackListMap.put(id, Boolean.TRUE);
20     }
21     /**
22      * 批量添加黑名单
23      * @param ids
24      */
25     public static void addBlackList(Map<String,Boolean> ids) {
26         blackListMap.putAll(ids);
27     }
28
29 }

  代码很简单,但是使用CopyOnWriteMap需要注意两件事情:

  1. 减少扩容开销。根据实际需要,初始化CopyOnWriteMap的大小,避免写时CopyOnWriteMap扩容的开销。
  2. 使用批量添加。因为每次添加,容器每次都会进行复制,所以减少添加次数,可以减少容器的复制次数。如使用上面代码里的addBlackList方法。

四. CopyOnWrite的缺点

1.内存占用问题

  因为CopyOnWrite的写时复制机制,所以在进行写操作的时候,内存里会同时驻扎两个对象的内存,旧的对象和新写入的对象(注意:在复制的时候只是复制容器里的引用,只是在写的时候会创建新对象添加到新容器里,而旧容器的对象还在使用,所以有两份对象内存)。如果这些对象占用的内存比较大,比如说200M左右,那么再写入100M数据进去,内存就会占用300M,那么这个时候很有可能造成频繁的Yong GC和Full GC。之前我们系统中使用了一个服务由于每晚使用CopyOnWrite机制更新大对象,造成了每晚15秒的Full GC,应用响应时间也随之变长。

针对内存占用问题,可以通过压缩容器中的元素的方法来减少大对象的内存消耗,比如,如果元素全是10进制的数字,可以考虑把它压缩成36进制或64进制。或者不使用CopyOnWrite容器,而使用其他的并发容器,如ConcurrentHashMap。

2.数据一致性问题

CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性。所以如果你希望写入的的数据,马上能读到,请不要使用CopyOnWrite容器。

参考:http://ifeve.com/java-copy-on-write/

时间: 2024-10-13 11:35:03

Java并发(6):concurrent包中的Copy-On-Write容器的相关文章

concurrent包中的TimeUnit类

TimeUnit类是concurrent包中的一个类,主要的方法是实现时间的转换,如天数转换为时间,或从时间转换成天数. 在该类中定义了一个枚举类型:代码为: NANOSECONDS { public long toNanos(long d) { return d; } public long toMicros(long d) { return d/(C1/C0); } public long toMillis(long d) { return d/(C2/C0); } public long

Java并发编程(3) JUC中的锁

一 前言 前面已经说到JUC中的锁主要是基于AQS实现,而AQS(AQS的内部结构 .AQS的设计与实现)在前面已经简单介绍过了.今天记录下JUC包下的锁是怎么基于AQS上实现的 二 同步锁 同步锁不是JUC中的锁但也顺便提下,它是由synchronized 关键字进行同步,实现对竞争资源互斥访问的锁. 同步锁的原理:对于每一个对象,有且仅有一个同步锁:不同的线程能共同访问该同步锁.在同一个时间点该同步锁能且只能被一个线程获取到,其他线程都得等待. 另外:synchronized是Java中的关

Java 并发之Concurrent 包综述

■ 并发原理 单核系统:线程交替执行,由于交替又快又多,给人一种同时执行的感觉多核系统:不仅可以交替执行线程,而且可以重叠执行线程补充: 本章指的并发主要指的是线程间的并发 ■ 常见的并发机制 ■ 不同系统的并发机制 UNIX:管道.消息.共享内存.信号量.信号 Linux内核:原子操作.自旋锁.信号量.屏障(由于服务器一般都位于Linux服务器上,因此此是我们最重要要了解的) Solaris线程同步原语:互斥锁.信号量.多读者/单写者锁.条件变量 Windows:等待函数.分派器对象.临界区.

Java的并发神器concurrent包详解(一)

在JDK 1.5之前,提到并发,java程序员们一般想到的是wait().notify().Synchronized关键字等,但是并发除了要考虑竞态资源.死锁.资源公平性等问题,往往还需要考虑性能问题,在一些业务场景往往还会比较复杂,这些都给java coder们造成不小的难题.JDK 1.5的concurrent包帮我们解决了不少问题. Concurrent包中包含了几个比较常用的并发模块,这个系列,LZ就和大家一起来学习各个模块,Let's Go! 一.线程池的基本用法 一般并发包里有三个常

深入理解java:2.3.1. 并发编程concurrent包 之Atomic原子操作

java中,可能有一些场景,操作非常简单,但是容易存在并发问题,比如i++, 此时,如果依赖锁机制,可能带来性能损耗等问题, 于是,如何更加简单的实现原子性操作,就成为java中需要面对的一个问题. 在backport-util-concurrent没有被引入java1.5并成为JUC之前, 这些原子类和原子操作方法,都是使用synchronized实现的. 不过JUC出现之后,这些原子操作 基于JNI提供了新的实现, 比如AtomicInteger,AtomicLong,AtomicBoole

深入理解java:2.3.4. 并发编程concurrent包 之容器ConcurrentLinkedQueue

1.    引言 在并发编程中我们有时候需要使用线程安全的队列. 如果我们要实现一个线程安全的队列有两种实现方式:一种是使用阻塞算法,另一种是使用非阻塞算法. 使用阻塞算法的队列可以用一个锁(入队和出队用同一把锁)或两个锁(入队和出队用不同的锁)等方式来实现, 而非阻塞的实现方式则可以使用循环CAS的方式来实现,本文让我们一起来研究下如何使用非阻塞的方式来实现线程安全队列ConcurrentLinkedQueue的. 2.    ConcurrentLinkedQueue的介绍 Concurre

深入理解java:2.3.3. 并发编程concurrent包 之容器ConcurrentHashMap

线程不安全的HashMap 因为多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap. 效率低下的HashTable容器 HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下. 因为当一个线程访问HashTable的同步方法时,其他线程访问HashTable的同步方法时,可能会进入阻塞或轮询状态. 如线程1使用put进行添加元素,线程2不但不能使用pu

JAVA并发七(多线程环境中安全使用集合API)

在集合API中,最初设计的Vector和Hashtable是多线程安全的.例如:对于Vector来说,用来添加和删除元素的方法是同步的.如果只有一个线程与Vector的实例交互,那么,要求获取和释放对象锁便是一种浪费,另外在不必要的时候如果滥用同步化,也有可能会带来死锁.因此,对于更改集合内容的方法,没有一个是同步化的.集合本质上是非多线程安全的,当多个线程与集合交互时,为了使它多线程安全,必须采取额外的措施. 在Collections类 中有多个静态方法,它们可以获取通过同步方法封装非同步集合

java并发:jdk1.8中ConcurrentHashMap源码浅析

ConcurrentHashMap是线程安全的.可以在多线程中对ConcurrentHashMap进行操作. 在jdk1.7中,使用的是锁分段技术Segment.数据结构是数组+链表. 对比jdk1.7,在jdk1.8中,ConcurrentHashMap主要使用了CAS(compareAndSwap).volatile.synchronized锁. 跟jdk1.8中的HashMap一样,数据结构是数组+链表+红黑树.当链表长度过长时,会转变为红黑树. jdk1.8的HashMap源码浅析,见