Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

Perceptual Generative Adversarial Networks for Small Object Detection

2017-07-11  19:47:46   CVPR 2017

  This paper use GAN to handle the issue of small object detection which is a very hard problem in general object detection. As shown in the following figures, small object and large objects usually shown different representations from the feature level.   

  Thus, it is possbile to use Percetual GAN to super-resolution of feature maps of small objects to obtain better detection performance.

  It consists of two subnetworks, i.e., a generator network and a perceptual discriminator network. Specifically, the generator is a deep residual based feature generative model which transforms the original poor features of small objects to highly discriminative ones by introducing fine-grained details from lower-level layers, achieving “super-resolution” on the intermediate representations.

  

  Different from normal GAN, this network also introduce a new perceptual loss tailored from the detection purpose. That is to say, the discriminator not only need to deal with the adversarial loss, but also need to justify the detection accuray benefiting from the generated super-resolved features with a perceptual loss.

  The proposed contributions:

  (1) We are the first to successfully apply GAN-alike models to solve the challenging small-scale object detection problems.

   (2) We introduce a new conditional generator model that learns the additive residual representation between large and small objects, instead of generating the complete representations as before.

   (3) We introduce a new perceptual discriminator that provides more comprehensive supervision beneficial for detections, instead of barely differentiating fake and real.

   (4) Successful applications on traffic sign detection and pedestrian detection have been achieved with the state-of-the-art performance.

  Figure 2. Training procedure of object detection network based on the Perceptual GAN.

  

  As shown in Figure 2, the generator network aims to generate super-resoved representation for the small object.

  The discriminator includes two branches, i.e.

    1. the adversarial branch  for differentiating between the generated superresolved representation.

    2. the perception branch for justifying the detection accurcy benefiting from the generation representation. 



  ==>> Dicriminative Network Architecture:

  The D network need to justify the dection accuracy benefiting from the generated super-resovled feature.

  Given the adversarial loss $L_{dis_a}$ and the perceptual loss $L_{dis_p}$ , a final loss function Ldis can be produced as weighted sum of both individual loss components. Given weighting parameters w1 and w2, we define Ldis = w1 × Ldis_a + w2 × Ldis_p to encourage the generator network to generate super-resolved representation with high detection accuracy. Here we set both w1 and w2 to be one. 

    



  



  

  

时间: 2024-10-11 03:32:48

Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection的相关文章

论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2016  摘要:近年来 CNN 在监督学习领域的巨大成功 和 无监督学习领域的无人问津形成了鲜明的对比,本文旨在链接上这两者之间的缺口.提出了一种 deep convolutional generative adversarial networks (DCGANs),that have certai

Speech Bandwidth Extension Using Generative Adversarial Networks

论文下载地址.博客园文章地址. 摘要 语音盲带宽扩展技术已经出现了一段时间,但到目前为止还没有出现广泛的部署,部分原因是增加的带宽伴随着附加的工件.本文提出了三代盲带宽扩展技术,从矢量量化映射到高斯混合模型,再到基于生成对抗性网络的深层神经网络的最新体系结构.这种最新的方法在质量上有了很大的提高,并证明了基于机器学习的盲带宽扩展算法在客观上和主观上都能达到与宽带编解码器相当的质量.我们相信,盲带宽扩展现在可以达到足够高的质量,以保证在现有的电信网络中部署. 关键词:盲源带宽扩展,人工带宽扩展,生

GAN01: Introductory guide to Generative Adversarial Networks (GANs) and their promise!

引用:Introductory guide to Generative Adversarial Networks (GANs) and their promise! What is a GAN? Let us take an analogy to explain the concept: 如果你想在某件事上做到更好,例如下棋,你会怎么做? 你或许会找一个比自己厉害的对手. 然后你会在你们对决中分析你错的地方和他对的地方, 并思考在下一场对决中你该如何击败对手. 你会不断重复这个过程,知道你击败对

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation - 1 - 多个域间的图像翻译论文学习

Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们提出了StarGAN方法,这是一个新型的可扩展的方法,能够仅使用一个单一模型就实现多领域的图像翻译.StarGAN这样的统一模型的结构允许在单个网络上同时训练带有不同领域的多个数据集.这使得StarGAN的翻译图像质量优于现有的模型,并具有将输入图像灵活地翻译到任意目标域的新能力.通过实验,验证了该

[论文理解] On the "steerability" of generative adversarial networks

On the "steerability" of generative adversarial networks Intro 本文提出对GAN的latent space进行操作的一种方法,通过对latent space的编辑实现生成域外样本,操控生成样本的基本属性,如控制生成样本的位置.光照.二维旋转.三维旋转等等. 文章的主要贡献为: 证明并实现了通过在latent space中的"walk"能够实现类似人类世界中相机的运动.颜色变换等操作,这些操作是通过自监督的

tensorfolw配置过程中遇到的一些问题及其解决过程的记录(配置SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving)

今天看到一篇关于检测的论文<SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous Driving>,论文中的效果还不错,后来查了一下,有一个Tensorflow版本的实现,因此在自己的机器上配置了Tensorflow的环境,然后将其给出的demo跑通了,其中遇到了一些小问题,通过查找网络上的资料解决掉了,在这里

[论文理解]Region-Based Convolutional Networks for Accurate Object Detection and Segmentation

Region-Based Convolutional Networks for Accurate Object Detection and Segmentation 概括 这是一篇2016年的目标检测的文章,也是一篇比较经典的目标检测的文章.作者介绍到,现在表现最好的方法非常的复杂,而本文的方法,简单又容易理解,并且不需要大量的训练集. 文章的大致脉络如图. 产生region proposal 文章提到了滑窗的方法,由于滑窗的方法缺点非常明显,就是每次只能检测一个aspect ratio,所以确

A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications

1 Inttroduction GANs由两个模型组成:生成器和鉴别器.生成器试图捕获真实示例的分布,以便生成新的数据样本.鉴别器通常是一个二值分类器,尽可能准确地将生成样本与真实样本区分开来.GANs的优化问题是一个极大极小优化问题.优化终止于相对于生成器的最小值和相对于鉴别器的最大值的鞍点. 2.1 Generative algorithms 生成算法可分为两类:显式密度模型和隐式密度模型. 2.1,1 Explicit density model 显式密度模型假设分布,利用真实数据训练包含

【Paper Reading】Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture Synthesis

Improved Textured Networks: Maximizing quality and diversity in Feed-Forward Stylization and Texture Synthesis https://arxiv.org/abs/1701.02096v1 本文最主要的贡献有两点: 1. 引入instance normalization 代替 batch normalization 2. 通过使得生产器从Julesz ensemble无偏采样来增加texture