神经网络算法程序

clc;
sqrs=[20.55 22.44 25.37 27.13 29.45 30.10 30.96 34.06 36.42 38.09 39.13 39.99 41.93 44.59 47.30 52.89 55.73 56.76 59.17 60.63];
sqjdcs=[0.6 0.75 0.85 0.9 1.05 1.35 1.45 1.6 1.71 1.85 2.15 2.2 2.25 2.35 2.5 2.6 2.7 2.85 2.95 3.1];
sqglmj=[0.09 0.11 0.11 0.14 0.2 0.23 0.23 0.32 0.32 0.34 0.36 0.36 0.38 0.49 0.56 0.59 0.59 0.67 0.69 0.79];
glkyl=[5126 6217 7730 9145 10460 11387 12353 15750 18304 19836 21024 19490 20433 22598 25107 33442 36836 40548 42927 43462];
glhyl=[1237 1379 1385 1399 1663 1714 1834 4233 8132 8936 11099 11203 10524 11115 13320 16762 18673 20724 20803 21804];
p=[sqrs;sqjdcs;sqglmj];
t=[glkyl;glhyl];
[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);
dx=[-1,1;-1,1;-1,1];

net=newff(dx,[3,7,2],{‘tansig‘,‘tansig‘,‘purelin‘},‘traingdx‘);
net.trainParam.show=1000;
net.trainParam.Lr=0.05;
net.trainParam.epochs=50000;
net.trainParam.goal=0.65*10^(-3);
net=train(net,pn,tn);

an=sim(net,pn);
a=postmnmx(an,mint,maxt);

x=1990:2009;
newk=a(1,:);
newh=a(2,:);
figure(2);
subplot(2,1,1);
plot(x,newk,‘r-o‘,x,glkyl,‘b--+‘);
legend(‘网络输出客流量‘,‘实际客流量‘);
xlabel(‘年份‘);ylabel(‘客运量‘);
title(‘客运量‘);
subplot(x,newk,‘r-o‘,x,glkyl,‘b--+‘);
legend(‘网络输出客流量‘,‘实际客流量‘);
xlabel(‘年份‘);ylabel(‘客运量‘);
title(‘客运量‘);

pnew=[73.39 75.55
3.9635 4.0975
0.988 1.0268];
pnewn=tramnmx(pnew,minp,maxp);
anewn=sim(net,pnewn);
anew=postmnmx(anewn,mint,maxt)

时间: 2024-10-27 17:05:22

神经网络算法程序的相关文章

如何用70行Java代码实现深度神经网络算法(转)

对于现在流行的深度学习,保持学习精神是必要的——程序员尤其是架构师永远都要对核心技术和关键算法保持关注和敏感,必要时要动手写一写掌握下来,先不用关心什么时候用到——用不用是政治问题,会不会写是技术问题,就像军人不关心打不打的问题,而要关心如何打赢的问题. 程序员如何学习机器学习 对程序员来说,机器学习是有一定门槛的(这个门槛也是其核心竞争力),相信很多人在学习机器学习时都会为满是数学公式的英文论文而头疼,甚至可能 知难而退.但实际上机器学习算法落地程序并不难写,下面是70行代码实现的反向多层(B

一个 11 行 Python 代码实现的神经网络

概要:直接上代码是最有效的学习方式.这篇教程通过由一段简短的 python 代码实现的非常简单的实例来讲解 BP 反向传播算法. 代码如下: Python 1 2 3 4 5 6 7 8 9 10 11 X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ]) y = np.array([[0,1,1,0]]).T syn0 = 2*np.random.random((3,4)) - 1 syn1 = 2*np.random.random((4,1))

利用GPU和Caffe训练神经网络

利用GPU和Caffe训练神经网络 摘要:本文为利用GPU和Caffe训练神经网络的实战教程,介绍了根据Kaggle的“奥托集团产品分类挑战赛”的数据进行训练一种多层前馈网络模型的方法,如何将模型应用于新数据,以及如何将网络图和训练权值可视化. [编者按]本文为利用GPU和Caffe训练神经网络的实战教程,介绍了根据Kaggle的“奥托集团产品分类挑战赛”的数据进行训练一种多层前馈网络模型的方法,如何将模型应用于新数据,以及如何将网络图和训练权值可视化. Caffe是由贾扬清发起的一个开源深度学

Neural Networks and Deep Learning学习笔记ch1 - 神经网络

近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的.从最主要的感知机開始讲起.到后来使用logistic函数作为激活函数的sigmoid neuron,和非常多其它如今深度学习中常使用的trick. 把深度学习的一个发展过程讲得非常清楚,并且还有非常多源代码和实验帮助理解.看完了整个tutorial后打算再又一次梳理一遍,来写点总结.以后再看其它资料

深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling

技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构的讨论上来,前面我在"深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning"一文中介绍了经典的CNN网络结构模型,这些可以说已经是家喻户晓的网络结构,在那一文结尾,我提到"是时候动一动卷积计算的形式了",原因是很多工作证明了,在基本的CNN卷积计算模式之外,很多简

对抗神经网络(Adversarial Nets)的介绍[1]

对抗NN简介 概念介绍 对抗名字的由来及对抗过程 对抗NN的模型 对抗NN的模型和训练 判别网络D的最优值 模拟学习高斯分布 对抗NN实验结果 <生成对抗NN>代码的安装与运行 对抗网络相关论文 论文引用 一.对抗NN简介 大牛Ian J. Goodfellow 的2014年的<Generative Adversative Nets>第一次提出了对抗网络模型,短短两年的时间,这个模型在深度学习生成模型领域已经取得了不错的成果.论文提出了一个新的框架,可以利用对抗过程估计生成模型,相

第五章 神经网络

读书笔记 周志华老师的<机器学习> 因为边看边记,所以写在随笔里,如果涉及版权问题,请您联系我立马删除,[email protected] 5.1 神经元模型 “神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应.” 神经元模型:生物神经网络中,每个神经元与其他神经元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位:如果某神经元的电位超过了一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经

中国首款嵌入式神经网络处理器发布

中国首款嵌入式神经网络处理器(NPU)芯片在北京正式发布,该芯片颠覆传统计算机架构,是由中星微“数字多媒体芯片技术”国家重点实验室研发,已于今年3月6日实现量产. 据介绍,有别于传统的冯诺依曼计算机架构,NPU采用了“数据驱动并行计算”架构,其具有低功耗的特点,擅长视频.图像类的多媒体数据处理,有助于人工智能在嵌入式机器视觉应用中稳定发挥. 中星微日前展示了型号为VC0758的国内首款NPU芯片产品,其内部集成了四个NPU内核,同时其还集成了[email protected]的SVAC国家标准音

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是根据现有深度学习教程<UFLDL教程>中的算法,在SparkMLlib中的实现.具体Spark MLlib Deep Learning(深度学习)目录结构: 第一章Neural Net(NN) 1.源码 2.源码解析 3.实例 第二章D