Max Sum of Max-K-sub-sequence
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Submit Status Practice HDU 3415
Appoint description:
System Crawler (2016-07-10)
Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4 6 3 6 -1 2 -6 5 -5 6 4 6 -1 2 -6 5 -5 6 3 -1 2 -6 5 -5 6 6 6 -1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
题意:
一个环,求长度小于等于k的连续子串值最大。
思路:
对于环,一般的处理就是在后面重复添加一段,求前缀和。然后维护一个递增的队列,如果当前的值比队尾的值小,说明对于后面的数来说,与当前位置sum的差肯定大于队尾的数,所以删除队尾的数,直到队尾的数小于当前的值或者队列空。因为队列长度不能超过k,所以从队头开始删,直到队头的数的位置大于等于当前的位置-k。当前的最值就是当前位置的值减去队头的值,然后维护总的值即可。
/* * Author: sweat123 * Created Time: 2016/7/11 21:46:18 * File Name: main.cpp */ #include<set> #include<map> #include<queue> #include<stack> #include<cmath> #include<string> #include<vector> #include<cstdio> #include<time.h> #include<cstring> #include<iostream> #include<algorithm> #define INF 1<<30 #define MOD 1000000007 #define ll long long #define lson l,m,rt<<1 #define key_value ch[ch[root][1]][0] #define rson m+1,r,rt<<1|1 #define pi acos(-1.0) using namespace std; const int MAXN = 200010; deque<int>q; int a[MAXN],n,k,sum[MAXN],cnt; int main(){ int t; scanf("%d",&t); while(t--){ q.clear(); scanf("%d%d",&n,&k); for(int i = 1; i <= n; i++){ scanf("%d",&a[i]); } for(int i = 1; i < k; i++){ a[i+n] = a[i]; } sum[0] = 0; for(int i = 1; i < n + k; i++){ sum[i] = sum[i-1] + a[i]; } int ans = -INF,l,r; for(int i = 1; i < n + k; i++){ while(!q.empty() && sum[q.back()] > sum[i-1]){ q.pop_back(); } while(!q.empty() && q.front() < (i - k)){ q.pop_front(); } q.push_back(i-1); int val = sum[i] - sum[q.front()]; if(val > ans){ ans = val; l = q.front(); r = i; } } if(r > n) r %= n; printf("%d %d %d\n",ans,l+1,r); } return 0; }