算法训练 安慰奶牛   最小生成树

问题描述

Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路。道路被用来连接N个牧场,牧场被连续地编号为1到N。每一个牧场都是一个奶牛的家。FJ计划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性。你首先要决定那些道路是需要保留的N-1条道路。第j条双向道路连接了牧场Sj和Ej(1 <= Sj <= N; 1 <= Ej <= N; Sj != Ej),而且走完它需要Lj的时间。没有两个牧场是被一条以上的道路所连接。奶牛们非常伤心,因为她们的交通系统被削减了。你需要到每一个奶牛的住处去安慰她们。每次你到达第i个牧场的时候(即使你已经到过),你必须花去Ci的时间和奶牛交谈。你每个晚上都会在同一个牧场(这是供你选择的)过夜,直到奶牛们都从悲伤中缓过神来。在早上 起来和晚上回去睡觉的时候,你都需要和在你睡觉的牧场的奶牛交谈一次。这样你才能完成你的 交谈任务。假设Farmer John采纳了你的建议,请计算出使所有奶牛都被安慰的最少时间。

输入格式

第1行包含两个整数N和P。

接下来N行,每行包含一个整数Ci

接下来P行,每行包含三个整数Sj, Ej和Lj

输出格式

输出一个整数, 所需要的总时间(包含和在你所在的牧场的奶牛的两次谈话时间)。

样例输入

5 7
10
10
20
6
30
1 2 5
2 3 5
2 4 12
3 4 17
2 5 15
3 5 6

样例输出

176

数据规模与约定

5 <= N <= 10000,N-1 <= P <= 100000,0 <= Lj <= 1000,1 <= Ci <= 1,000。

数据有问题 看代码里的

 1 #include<bits/stdc++.h>
 2 #include<iostream>
 3 #include<cstring>
 4 #include<cstdio>
 5 #include<algorithm>
 6 #include<vector>
 7 #define ll __int64
 8 #define PI acos(-1.0)
 9 #define mod 1000000007
10 using namespace std;
11 int n,p;
12 struct node
13 {
14     int w;
15     int l,r;
16 }N[1000006];
17 int fa[100005];
18 int s[100005];
19 int find(int root)
20 {
21     if(fa[root]!=root)
22         return fa[root]=find(fa[root]);
23     else
24         return root;
25 }
26 void unio(int a,int b)
27 {
28     int aa=find(a);
29     int bb=find(b);
30     if(aa!=bb)
31     {
32         fa[aa]=bb;
33     }
34 }
35 bool cmp(struct node aa,struct node bb)
36 {
37     return aa.w<bb.w;
38 }
39 int main()
40 {
41     scanf("%d %d",&n,&p);
42     int minx=10000000;
43     for(int i=1;i<=n;i++)
44     {
45         scanf("%d",&s[i]);
46         minx=min(minx,s[i]);
47         fa[i]=i;
48     }
49     for(int i=1;i<=p;i++)
50     {
51         scanf("%d %d %d",&N[i].l,&N[i].r,&N[i].w);
52         N[i].w=2*N[i].w+s[N[i].l]+s[N[i].r];
53     }
54     sort(N+1,N+1+p,cmp);
55     int ans=0;
56     for(int i=1;i<=p;i++)
57     {
58         if(find(N[i].l)!=find(N[i].r))
59         {
60           ans=ans+N[i].w;
61           unio(N[i].l,N[i].r);
62         }
63     }
64     printf("%d\n",ans+minx);
65     return 0;
66 }
67 /*
68 5 6
69 10
70 10
71 20
72 6
73 30
74 1 2 5
75 2 3 5
76 2 4 12
77 3 4 17
78 2 5 15
79 3 5 6
80 */
时间: 2024-10-23 00:51:27

算法训练 安慰奶牛   最小生成树的相关文章

算法训练 安慰奶牛 最小生成树+构造

http://lx.lanqiao.cn/problem.page?gpid=T16 题意:n个点,p条边,n,p<=1e5.每个点都有权值c[i],求选择一个点出发遍历所有点后返回需要的最小代价? 容易发现 每条边都经历了两次,边(u,v) 第一次达到v时ans+=c[v],v返回u时ans+=c[u] 则构造边为:安慰两个点(u,v)的代价为 2*w+c[u]+c[v],求出MST即可 #include <bits/stdc++.h> using namespace std; con

蓝桥杯试题 算法训练 安慰奶牛

算法训练 安慰奶牛 时间限制:1.0s   内存限制:256.0MB 问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是一个奶牛的家.FJ计划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性.你首先要决定那些道路是需要保留的N-1条道路.第j条双向道路连接了牧场Sj和Ej(1 <= Sj <= N; 1 <= Ej <= N; Sj != Ej),而且走完它需要Lj的时间.

算法训练 安慰奶牛

[原][Usaco Nov08 Gold] 安慰奶牛 2014-5-26阅读159 评论0 Description Farmer John变得非常懒, 他不想再继续维护供奶牛之间供通行的道路. 道路被用来连接N (5 <= N <= 10,000)个牧场, 牧场被连续地编号为1..N. 每一个牧场都是一个奶牛的家. FJ计划除去P(N-1 <= P <= 100,000)条道路中尽可能多的道路, 但是还要保持牧场之间的连通性. 你首先要决定那些道路是需要保留的N-1条道路. 第j条

蓝桥杯训练 安慰奶牛 (Kruskal MST)

算法训练 安慰奶牛 时间限制:1.0s   内存限制:256.0MB 问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是一个奶牛的家.FJ计划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性.你首先要决定那些道路是需要保留的N-1条道路.第j条双向道路连接了牧场Sj和Ej(1 <= Sj <= N; 1 <= Ej <= N; Sj != Ej),而且走完它需要Lj的时间.

33-算法训练 安慰奶牛 - 对象数组排序,对象链表转数组

算法训练 安慰奶牛 时间限制:1.0s   内存限制:256.0MB 问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是一个奶牛的家.FJ计划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性.你首先要决定那些道路是需要保留的N-1条道路.第j条双向道路连接了牧场Sj和Ej(1 <= Sj <= N; 1 <= Ej <= N; Sj != Ej),而且走完它需要Lj的时间.

蓝桥杯 algo——6 安慰奶牛 (最小生成树)

问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是一个奶牛的家.FJ计 划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性.你首先要决定那些道路是需要保留的N-1条道路.第j条双向道路连接了牧场Sj和Ej(1 <= Sj <= N; 1 <= Ej <= N; Sj != Ej),而且走完它需要Lj的时间.没有两个牧场是被一条以上的道路所连接.奶牛们非常伤心,因为她们的交通

蓝桥杯 安慰奶牛

算法训练 安慰奶牛 时间限制:1.0s   内存限制:256.0MB 锦囊1 使用最小生成树算法. 锦囊2 将每条边(a, b)的权值Lj改变为2Lj+Ca+Cb,然后使用最小生成树来计算. 问题描述 Farmer John变得非常懒,他不想再继续维护供奶牛之间供通行的道路.道路被用来连接N个牧场,牧场被连续地编号为1到N.每一个牧场都是一个奶牛的家.FJ计划除去P条道路中尽可能多的道路,但是还要保持牧场之间 的连通性.你首先要决定那些道路是需要保留的N-1条道路.第j条双向道路连接了牧场Sj和

蓝桥杯 - 安慰奶牛 (最小生成树)

题目传送:蓝桥杯 - 安慰奶牛 思路:先算好边的权值,为本来的边的权值的两倍加上两个点的权值,再进行kruskal,因为边数较大,不宜采用prim AC代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define LL long long #define INF 0x7fffffff const in

蓝桥杯--算法训练

<1>区间k大数查询 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. 第二行包含n个正整数,表示给定的序列. 第三个包含一个正整数m,表示询问个数. 接下来m行,每行三个数l,r,K,表示询问序列从左往右第l个数到第r个数中,从大往小第K大的数是哪个.序列元素从1开始标号. 输出格式 总共输出m行,每行一个数,表示询问的答案. 样例输入 51 2 3 4 521 5 22 3 2 样例输出 42 数据规模与约定 对于3