57-1、2、3 NoSQL基础及MongoDB、MongoDB基本应用、mongodb索引及复制集

02MongoDB基本应用

配置环境:

node1:192.168.1.121CentOS release 6.7

[[email protected] ~]# cd mongodb-2.6.4/

[[email protected] mongodb-2.6.4]# ls

mongodb-org-2.6.4-1.x86_64.rpm         mongodb-org-shell-2.6.4-1.x86_64.rpm

mongodb-org-mongos-2.6.4-1.x86_64.rpm  mongodb-org-tools-2.6.4-1.x86_64.rpm

mongodb-org-server-2.6.4-1.x86_64.rpm

[[email protected] mongodb-2.6.4]# yum install mongodb-org-server-2.6.4-1.x86_64.rpm mongodb-org-shell-2.6.4-1.x86_64.rpm mongodb-org-tools-2.6.4-1.x86_64.rpm -y

[[email protected] mongodb-2.6.4]# cd

[[email protected] ~]# mkdir -p /mongodb/data

[[email protected] ~]# id mongod

uid=496(mongod) gid=492(mongod) groups=492(mongod)

[[email protected] ~]# chown -R mongod.mongod /mongodb/

[[email protected] ~]# vim /etc/mongod.conf 

修改

dbpath=/var/lib/mongo

dbpath=/mongodb/data

修改

bind_ip=127.0.0.1

为 

#bind_ip=127.0.0.1

修改

#httpinterface=true

为 

httpinterface=true

rest=true

[[email protected] ~]# service mongod start

[[email protected] ~]# ls /mongodb/data/

journal  local.0  local.ns  mongod.lock  _tmp

[[email protected] ~]# du -sh /mongodb/data/

3.1G    /mongodb/data/

[[email protected] ~]# ss -tnl

State      Recv-Q Send-Q        Local Address:Port          Peer Address:Port 

LISTEN     0      128                      :::39591                   :::*     

LISTEN     0      128                       *:27017                    *:*     

LISTEN     0      128                      :::111                     :::*     

LISTEN     0      128                       *:111                      *:*     

LISTEN     0      128                       *:28017                    *:*     

LISTEN     0      128                       *:46453                    *:*     

LISTEN     0      128                      :::22                      :::*     

LISTEN     0      128                       *:22                       *:*     

LISTEN     0      128               127.0.0.1:631                      *:*     

LISTEN     0      128                     ::1:631                     :::*     

LISTEN     0      100                     ::1:25                      :::*     

LISTEN     0      100               127.0.0.1:25                       *:*

[[email protected] ~]# mongo --host 192.168.1.121

MongoDB shell version: 2.6.4

connecting to: 192.168.1.121:27017/test

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

        http://docs.mongodb.org/

Questions? Try the support group

        http://groups.google.com/group/mongodb-user

> show dbs

admin  (empty)

local  0.078GB

> use testdb

switched to db testdb

> show dbs

admin  (empty)

local  0.078GB

> db.stats()

{

        "db" : "testdb",

        "collections" : 0,

        "objects" : 0,

        "avgObjSize" : 0,

        "dataSize" : 0,

        "storageSize" : 0,

        "numExtents" : 0,

        "indexes" : 0,

        "indexSize" : 0,

        "fileSize" : 0,

        "dataFileVersion" : {

        },

        "ok" : 1

}

> db.version()

2.6.4

> db.getCollectionNames()

[ ]

#插入数据

> db.students.insert({name:"tom",age:23})

WriteResult({ "nInserted" : 1 })

> show collections

students

system.indexes

> show dbs

admin   (empty)

local   0.078GB

testdb  0.078GB

> db.students.stats()

{

        "ns" : "testdb.students",

        "count" : 1,

        "size" : 112,

        "avgObjSize" : 112,

        "storageSize" : 8192,

        "numExtents" : 1,

        "nindexes" : 1,

        "lastExtentSize" : 8192,

        "paddingFactor" : 1,

        "systemFlags" : 1,

        "userFlags" : 1,

        "totalIndexSize" : 8176,

        "indexSizes" : {

                "_id_" : 8176

        },

        "ok" : 1

}

> db.getCollectionNames()

[ "students", "system.indexes" ]

> db.students.insert ({name:"jerry",age:40,gender:"M"})

WriteResult({ "nInserted" : 1 })

> db.students.stats()

{

        "ns" : "test.students",

        "count" : 1,

        "size" : 112,

        "avgObjSize" : 112,

        "storageSize" : 8192,

        "numExtents" : 1,

        "nindexes" : 1,

        "lastExtentSize" : 8192,

        "paddingFactor" : 1,

        "systemFlags" : 1,

        "userFlags" : 1,

        "totalIndexSize" : 8176,

        "indexSizes" : {

                "_id_" : 8176

        },

        "ok" : 1

}

#帮助:

> db.mycoll.help()

> db.mycoll.find.help()

> db.students.find()

{ "_id" : ObjectId("58720933110b5df571418845"), "name" : "jerry", "age" : 40, "gender" : "M" }

{ "_id" : ObjectId("58720a26110b5df571418846"), "name" : "tom", "age" : 23 }

> db.students.count()

2

> db.students.insert({name:"Ou Yangfeng",Age:90,Course:"HaMogong"})

WriteResult({ "nInserted" : 1 })

> db.students.insert({name:"Yang Guo",Age:20,Course:"Meinv Quan"})

WriteResult({ "nInserted" : 1 })

> db.students.insert({name:"Guo Jing",Age:40,Course:"Xiangchong Shibazhang"})

WriteResult({ "nInserted" : 1 })

#查询年龄大于30的记录

> db.students.find({Age:{$gt: 30}})

{ "_id" : ObjectId("58720b48110b5df571418847"), "name" : "Ou Yangfeng", "Age" : 90, "Course" : "HaMogong" }

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

#查询年龄在20到40之间的记录

> db.students.find({Age:{$in: [20,40]}})

{ "_id" : ObjectId("58720b71110b5df571418848"), "name" : "Yang Guo", "Age" : 20, "Course" : "Meinv Quan" }

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

#查看年龄不在20到40之间的记录

> db.students.find({Age:{$nin: [20,40]}})

{ "_id" : ObjectId("58720933110b5df571418845"), "name" : "jerry", "age" : 40, "gender" : "M" }

{ "_id" : ObjectId("58720a26110b5df571418846"), "name" : "tom", "age" : 23 }

{ "_id" : ObjectId("58720b48110b5df571418847"), "name" : "Ou Yangfeng", "Age" : 90, "Course" : "HaMogong" }

#查看Age或age值不在20到40之间的记录

> db.students.find({$or: [{Age: {$nin: [20,40]}}, {age:{$nin:[20,40]}}]})

{ "_id" : ObjectId("58720933110b5df571418845"), "name" : "jerry", "age" : 40, "gender" : "M" }

{ "_id" : ObjectId("58720a26110b5df571418846"), "name" : "tom", "age" : 23 }

{ "_id" : ObjectId("58720b48110b5df571418847"), "name" : "Ou Yangfeng", "Age" : 90, "Course" : "HaMogong" }

{ "_id" : ObjectId("58720b71110b5df571418848"), "name" : "Yang Guo", "Age" : 20, "Course" : "Meinv Quan" }

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

#查看Age或age值在20到40之间的记录

> db.students.find({$or: [{Age: {$in: [20,40]}}, {age:{$in:[20,40]}}]})

{ "_id" : ObjectId("58720933110b5df571418845"), "name" : "jerry", "age" : 40, "gender" : "M" }

{ "_id" : ObjectId("58720b71110b5df571418848"), "name" : "Yang Guo", "Age" : 20, "Course" : "Meinv Quan" }

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

#查看存在gender字段的记录

> db.students.find({gender: {$exists: true}})

{ "_id" : ObjectId("58720933110b5df571418845"), "name" : "jerry", "age" : 40, "gender" : "M" }

#查看不存在gender字段的记录

> db.students.find({gender: {$exists: false}})

{ "_id" : ObjectId("58720a26110b5df571418846"), "name" : "tom", "age" : 23 }

{ "_id" : ObjectId("58720b48110b5df571418847"), "name" : "Ou Yangfeng", "Age" : 90, "Course" : "HaMogong" }

{ "_id" : ObjectId("58720b71110b5df571418848"), "name" : "Yang Guo", "Age" : 20, "Course" : "Meinv Quan" }

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

#修改"tom"的age为21

> db.students.find()

{ "_id" : ObjectId("58720933110b5df571418845"), "name" : "jerry", "age" : 40, "gender" : "M" }

{ "_id" : ObjectId("58720a26110b5df571418846"), "name" : "tom", "age" : 23 }

{ "_id" : ObjectId("58720b48110b5df571418847"), "name" : "Ou Yangfeng", "Age" : 90, "Course" : "HaMogong" }

{ "_id" : ObjectId("58720b71110b5df571418848"), "name" : "Yang Guo", "Age" : 20, "Course" : "Meinv Quan" }

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

> db.students.update({name:"tom"},{$set: {age: 21}})

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

> db.students.find()

{ "_id" : ObjectId("58720933110b5df571418845"), "name" : "jerry", "age" : 40, "gender" : "M" }

{ "_id" : ObjectId("58720a26110b5df571418846"), "name" : "tom", "age" : 21 }

{ "_id" : ObjectId("58720b48110b5df571418847"), "name" : "Ou Yangfeng", "Age" : 90, "Course" : "HaMogong" }

{ "_id" : ObjectId("58720b71110b5df571418848"), "name" : "Yang Guo", "Age" : 20, "Course" : "Meinv Quan" }

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

#删除age值为21的记录

> db.students.remove({age:21})

WriteResult({ "nRemoved" : 1 })

> db.students.find()

{ "_id" : ObjectId("58720933110b5df571418845"), "name" : "jerry", "age" : 40, "gender" : "M" }

{ "_id" : ObjectId("58720b48110b5df571418847"), "name" : "Ou Yangfeng", "Age" : 90, "Course" : "HaMogong" }

{ "_id" : ObjectId("58720b71110b5df571418848"), "name" : "Yang Guo", "Age" : 20, "Course" : "Meinv Quan" }

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

#统计Age值在20到40之间的记录数

> db.students.find({Age: {$in: [20,40]}}).count()

2

#显示Age值在20到40之间的记录,仅显示满足条件的第一条记录

> db.students.find({Age: {$in: [20,40]}}).limit(1)

{ "_id" : ObjectId("58720b71110b5df571418848"), "name" : "Yang Guo", "Age" : 20, "Course" : "Meinv Quan" }

#显示Age值在20到40之间的记录,第一条记录不显示

> db.students.find({Age: {$in: [20,40]}}).skip(1)

{ "_id" : ObjectId("58720ba8110b5df571418849"), "name" : "Guo Jing", "Age" : 40, "Course" : "Xiangchong Shibazhang" }

#显示Age值大于10的记录,仅显示一条满足条件的记录

> db.students.findOne({Age: {$gt: 10}})

{

        "_id" : ObjectId("58720b48110b5df571418847"),

        "name" : "Ou Yangfeng",

        "Age" : 90,

        "Course" : "HaMogong"

}

#删除students表

> db.students.drop()

true

> show collections;

system.indexes

> db.stats()

{

        "db" : "test",

        "collections" : 2,

        "objects" : 1,

        "avgObjSize" : 48,

        "dataSize" : 48,

        "storageSize" : 16384,

        "numExtents" : 2,

        "indexes" : 0,

        "indexSize" : 0,

        "fileSize" : 67108864,

        "nsSizeMB" : 16,

        "dataFileVersion" : {

                "major" : 4,

                "minor" : 5

        },

        "extentFreeList" : {

                "num" : 2,

                "totalSize" : 139264

        },

        "ok" : 1

}

#删除数据库

> db.dropDatabase()

{ "dropped" : "test", "ok" : 1 }

> show dbs

admin   (empty)

local   0.078GB

testdb  0.078GB

03mongodb索引及复制集

[[email protected] ~]# mongo

MongoDB shell version: 2.6.4

connecting to: test

> use testdb

switched to db testdb

> for (i=1;i<=10000;i++) db.students.insert({name:"student"+i, age:(i%120), address:"#85 Wenhua Road, Zhengzhou, China"})

> db.students.find().count()

10000

> db.students.find()

{ "_id" : ObjectId("5871e94113222f399a5240a3"), "name" : "tom", "age" : 23 }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54561"), "name" : "student1", "age" : 1, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54562"), "name" : "student2", "age" : 2, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54563"), "name" : "student3", "age" : 3, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54564"), "name" : "student4", "age" : 4, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54565"), "name" : "student5", "age" : 5, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54566"), "name" : "student6", "age" : 6, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54567"), "name" : "student7", "age" : 7, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54568"), "name" : "student8", "age" : 8, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54569"), "name" : "student9", "age" : 9, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd5456a"), "name" : "student10", "age" : 10, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd5456b"), "name" : "student11", "age" : 11, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd5456c"), "name" : "student12", "age" : 12, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd5456d"), "name" : "student13", "age" : 13, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd5456e"), "name" : "student14", "age" : 14, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd5456f"), "name" : "student15", "age" : 15, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54570"), "name" : "student16", "age" : 16, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54571"), "name" : "student17", "age" : 17, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54572"), "name" : "student18", "age" : 18, "address" : "#85 Wenhua Road, Zhengzhou, China" }

{ "_id" : ObjectId("587232dba7eb9c0c7bd54573"), "name" : "student19", "age" : 19, "address" : "#85 Wenhua Road, Zhengzhou, China" }

#在name字段上构建一个升序索引

> db.students.ensureIndex({name: 1})

{

        "createdCollectionAutomatically" : false,

        "numIndexesBefore" : 1,

        "numIndexesAfter" : 2,

        "ok" : 1

}

#显示表中索引

> db.students.getIndexes()

[

        {

                "v" : 1,

                "key" : {

                        "_id" : 1

                },

                "name" : "_id_",

                "ns" : "testdb.students"

        },

        {

                "v" : 1,

                "key" : {

                        "name" : 1

                },

                "name" : "name_1",

                "ns" : "testdb.students"

        }

]

#删除索引

> db.students.dropIndex("name_1")

{ "nIndexesWas" : 2, "ok" : 1 }

> db.students.getIndexes()

[

        {

                "v" : 1,

                "key" : {

                        "_id" : 1

                },

                "name" : "_id_",

                "ns" : "testdb.students"

        }

]

#创建唯一索引

> db.students.ensureIndex({name: 1},{unique: true})

{

        "createdCollectionAutomatically" : false,

        "numIndexesBefore" : 1,

        "numIndexesAfter" : 2,

        "ok" : 1

}

> db.students.getIndexes()

[

        {

                "v" : 1,

                "key" : {

                        "_id" : 1

                },

                "name" : "_id_",

                "ns" : "testdb.students"

        },

        {

                "v" : 1,

                "unique" : true,

                "key" : {

                        "name" : 1

                },

                "name" : "name_1",

                "ns" : "testdb.students"

        }

]

#创建唯一索引后,新增相同字段值会提示错误

> db.students.insert({name: "student20", age: 20,})

WriteResult({

        "nInserted" : 0,

        "writeError" : {

                "code" : 11000,

                "errmsg" : "insertDocument :: caused by :: 11000 E11000 duplicate key error index: testdb.students.$name_1  dup key: { : \"student20\" }"

        }

})

> db.students.find({name: "student5000"})

{ "_id" : ObjectId("587232e4a7eb9c0c7bd558e8"), "name" : "student5000", "age" : 80, "address" : "#85 Wenhua Road, Zhengzhou, China" }

#显示查找语句执行过程

> db.students.find({name: "student5000"}).explain()

{

        "cursor" : "BtreeCursor name_1",

        "isMultiKey" : false,

        "n" : 1,

        "nscannedObjects" : 1,

        "nscanned" : 1,

        "nscannedObjectsAllPlans" : 1,

        "nscannedAllPlans" : 1,

        "scanAndOrder" : false,

        "indexOnly" : false,

        "nYields" : 0,

        "nChunkSkips" : 0,

        "millis" : 0,

        "indexBounds" : {

                "name" : [

                        [

                                "student5000",

                                "student5000"

                        ]

                ]

        },

        "server" : "node1:27017",

        "filterSet" : false

}

> db.students.find({name: {$gt: "student5000"}}).explain()

{

        "cursor" : "BtreeCursor name_1",

        "isMultiKey" : false,

        "n" : 5552,

        "nscannedObjects" : 5552,

        "nscanned" : 5552,

        "nscannedObjectsAllPlans" : 5552,

        "nscannedAllPlans" : 5552,

        "scanAndOrder" : false,

        "indexOnly" : false,

        "nYields" : 43,

        "nChunkSkips" : 0,

        "millis" : 13,

        "indexBounds" : {

                "name" : [

                        [

                                "student5000",

                                {

                                }

                        ]

                ]

        },

        "server" : "node1:27017",

        "filterSet" : false

}

时间: 2024-12-28 12:29:57

57-1、2、3 NoSQL基础及MongoDB、MongoDB基本应用、mongodb索引及复制集的相关文章

【MongoDB】windows平台搭建Mongo数据库复制集(类似集群)(转)

原文链接:[MongoDB]windows平台搭建Mongo数据库复制集(类似集群)(一) Replica  Sets(复制集)是在mongodDB1.6版本开始新增的功能,它可以实现故障自动切换和自动修复功能成员节点的功能,各个DB之间的数据完全一致,大大降低了单点故障的风险. [] 以上图示是三个节点的Replica Set架构.该图来源于红丸编写的<Mongodb管理与开发精要>这本书.从上图可以看出,结构类似与一个集群,其实完全可以当做一个集群.因为它确实和集群实现的作用是相同的. 一

【MongoDB】windows平台搭建Mongo数据库复制集(类似集群)(三)

关于windows平台搭建Mongo数据库复制集这个话题,我已经在前面写了两篇博客 第一篇: 如何在windows平台搭建Mongo数据库复制集 第二篇: 数据同步和故障自适应测试 在本篇里面,咱们重点总结一下复制集,以及分析一下它的工作原理 一.常见场景 应用程序和数据库之间的网络连接丢失 计划停机.断电.数据库服务硬盘故障等等 复制可以进行故障转移,复制能让你在副本间均衡读负载,保证复制节点与主节点保持同步 二.工作原理 副本集依赖于两个基础机制:oplog和"心跳"(heartb

【MongoDB】windows平台搭建Mongo数据库复制集(类似集群)(二)

在上篇博客中,我们主要阐述了在windows平台下如何搭建mongodb复制集.详细博客地址: 由于篇幅有限在上篇没有对结果进行验证,在本篇博客中我们主要进行测试: 通过rs.status()命令我们可以查询到各个节点运行正常. 一.数据同步测试 在28011.28012端口上进行插入: 查看原因:网上找到答案 首先这是正常的,因为SECONDARY是不允许读写的, 在写多读少的应用中,使用Replica Sets来实现读写分离.通过在连接时指定或者在主库指定slaveOk,由Secondary

【MongoDB】windows平台搭建Mongo数据库复制集(相似集群)(一)

Replica  Sets(复制集)是在mongodDB1.6版本号開始新增的功能.它能够实现故障自己主动切换和自己主动修复功能成员节点的功能,各个DB之间的数据全然一致,大大减少了单点故障的风险. [] 以上图示是三个节点的Replica Set架构.该图来源于红丸编写的<Mongodb管理与开发精要>这本书.从上图能够看出,结构类似与一个集群.事实上全然能够当做一个集群.由于它确实和集群实现的作用是同样的. 一.部署Replica Sets. 接下来显示怎样在一台server上面演示部署3

第五十一课 NoSQL基础概念及MongoDB应用、数据库分配概念

NoSQL基础概念及MongoDB MongoDB基础应用 MongoDB索引及复制集 数据库分片的概念及Mongodb  sharding的实现 一.NoSQL基础概念 NoSQL(Not Only SQL),是一种技术流派,非关系型数据库:适合用在大数据领域,各种nosql有各自的查询语句,这也是nosql的缺点之一. 大数据(BigDate)也称海量数据是一个模糊的概念,像Google.百度收集大量数据,分析现在.预测未来:这些数据通过某些特定的特征和算法得出某些预测的结果,这些数据为大数

MongoDB实战指南(七):MongoDB复制集之复制集工作机制

http://www.cnblogs.com/longshiyVip/p/5097336.html 概述了复制集,整体上对复制集有了个概念,但是复制集最重要的功能之——自动故障转移是怎么实现的呢?数据同步又是如何实现的?带着这两个问题,下面展开分析. 一. 数据同步 先利用mongo客户端登录到复制集的primary节点上. >mongo --port 40000 查看实例上所有数据库 rs0:PRIMARY> show dbs local 0.09375GB 可以看到只有一个local数据库

【MongoDB】01、MongoDB基础

一.MongoDB概述 1.MogoDB简介 什么是MongoDB ? MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性能. MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成.MongoDB 文档类似于 JSON 对象.字段值可以包含其他文档,数组及文档数组. 一个文档相当于mysql数据库中的一行数据 200

MongoDB基础入门之一:基础入门和复制集

mongoDB基础入门 介绍 mongoDB是一个存储文档的非关系型数据库 mongoDB的结构: 数据库: 包含集合 集合: 存储文档 文档: json格式 一条命令在docker容器中运行mongoDB docker run --name mymongo -v /mongo/data:/data/db -d mongo:4 docker ps #查看容器状态 docker logs mymongo #查看日志 mongoExpress 的使用 基于网络的mongoDB数据库管理页面 dock

MongDB基础学习(七)—— 【MongoDB for Java】Java操作MongoDB

[MongoDB for Java]Java操作MongoDB 开发的产品为了融资,不停得改版,从第一版到现在最新版本,最后发现公司发展方向都变了,有最初电子商务改成VR内容提供者(没办法,要别人钱,就得按照别人的规划的战略走).本来本章节会放到后面再做讲解,无奈,部门需要做一次培训任务,我就想到拿Java操作MongoDB作为培训内容,开发环境和依赖jar如下: (1)开发环境: System:Windows IDE:eclipse Database:mongoDB2.6 Maven:apac