harris 算法的python实现

harris 作为最常用的特征点检测算法。

第一个文件harris.py

<pre name="code" class="python">from scipy.ndimage import filters
from numpy import *
from pylab import *
def compute_harris_response(im,sigma=3):
    imx=zeros(im.shape)#计算导数
    filters.gaussian_filter(im,(sigma,sigma),(0,1),imx)
    imy=zeros(im.shape)
    filters.gaussian_filter(im,(sigma,sigma),(1,0),imy)
    Wxx=filters.gaussian_filter(imx*imx,sigma)
   #计算harris矩阵分量
    Wxy=filters.gaussian_filter(imx*imy,sigma)
    Wyy=filters.gaussian_filter(imy*imy,sigma)
    Wdet=Wxx*Wyy-Wxy**2    #计算矩阵的特征值和迹
    Wtr=Wxx+Wyy
    return  Wdet/Wtr
def get_harris_points(harrisim,min_dist=10,threshold=0.1):
    conner_threshold=harrisim.max()*threshold
    harrisim_t=(harrisim>conner_threshold)*1

    coords=array(harrisim_t.nonzero()).T
    candidate_values=[harrisim[c[0],c[1]] for c in coords]
    index=argsort(candidate_values)
    allowed_locations=zeros(harrisim.shape)
    allowed_locations[min_dist:-min_dist,min_dist:-min_dist]=1
    filtered_coords=[]
    for i in index:
        if allowed_locations[coords[i,0],coords[i,1]]==1:
            filtered_coords.append(coords[i])
            allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),(coords[i,1]-min_dist):(coords[i,1]+min_dist)]=0#此处保证min_dist*min_dist只有一个harris特征点
    return filtered_coords
def plot_harris_points(image,filtered_coords):
    figure()
    gray()
    imshow(image)
    plot([p[1] for p in filtered_coords],[p[0]for p in filtered_coords],'+')
    axis('off')
    show()

第二个文件测试算法

from PIL import Image

from numpy import *
import harris
from pylab import *
from scipy.ndimage import filters
im=array(Image.open('33.jpg').convert('L'))
harrisim=harris.compute_harris_response(im)
filtered_coords=harris.get_harris_points(harrisim)
harris.plot_harris_points(im,filtered_coords)

时间: 2024-10-09 17:41:41

harris 算法的python实现的相关文章

《机器学习实战》之K-均值聚类算法的python实现

<机器学习实战>之K-均值聚类算法的python实现 最近的项目是关于"基于数据挖掘的电路故障分析",项目基本上都是师兄们在做,我只是在研究关于项目中用到的如下几种算法:二分均值聚类.最近邻分类.基于规则的分类器以及支持向量机.基于项目的保密性(其实也没有什么保密的,但是怕以后老板看到我写的这篇博文,所以,你懂的),这里就不介绍"基于数据挖掘的电路故障分析"的思路了. 废话不多说了,开始正题哈. 基本K-均值聚类算法 基本K均值算法的基本思路为:首先选择

《机器学习实战》之二分K-均值聚类算法的python实现

<机器学习实战>之二分K-均值聚类算法的python实现 上面博文介绍了K-均值聚类算法及其用python实现,上篇博文中的两张截图,我们可以看到,由于K-均值聚类算法中由于初始质心的选取,会造成聚类的局部最优,并不是全局最优,因此,会造成聚类的效果并不理想,为克服K-均值算法收敛于局部最小值的问题,就有了二分K-均值算法. 二分K-均值聚类算法 二分K均值算法是基本K均值算法的直接扩充,其基本思想是:为了得到K个簇,首先将所有点的集合分裂成两个簇,然后从这些簇中选取一个继续分裂,迭代直到产生

OpenCV使用Harris算法实现角点检测

纯粹阅读,请移步OpenCV使用Harris算法实现角点检测 效果图 源码 KqwOpenCVFeaturesDemo 角点是两条边缘的交点或者在局部邻域中有多个显著边缘方向的点.Harris角点检测是一种在角点检测中最常见的技术. Harris角点检测器在图像上使用滑动窗口计算亮度的变化. 封装 这里用到了RxJava.主要是因为图片处理是耗时操作,会阻塞线程,为了防止界面卡顿,这里使用RxJava进行了线程切换. /** * Harris角点检测 * * @param bitmap 要检测的

分类算法——k最近邻算法(Python实现)(文末附工程源代码)

kNN算法原理 k最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法.它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样本中大多数属于某一个类别,则该样本也属于这个类别. kNN算法的步骤 第一阶段:确定k值(指最近的邻居的个数),一般是一个奇数 第二阶段:确定距离度量公式.文本分类一般使用夹角余弦,得出待分类数据点和所有已知类别的样本点,从中选择距离最近的k个样本: 第三阶段:统计这k个样本点钟各个类别的数量 kN

机器学习算法与Python实践之(三)支持向量机(SVM)进阶

机器学习算法与Python实践之(三)支持向量机(SVM)进阶 机器学习算法与Python实践之(三)支持向量机(SVM)进阶 [email protected] http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是

机器学习算法与Python实践之(四)支持向量机(SVM)实现

机器学习算法与Python实践之(四)支持向量机(SVM)实现 机器学习算法与Python实践之(四)支持向量机(SVM)实现 [email protected] http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是

机器学习算法与Python实践之(二)支持向量机(SVM)初级

机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 [email protected] http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是

Apriori算法的Python实现

Apriori算法是数据挖掘中频发模式挖掘的鼻祖,从60年代就开始流行,其算法思想也十分简单朴素,首先挖掘出长度为1的频繁模式,然后k=2 将这些频繁模式合并组成长度为k的频繁模式,算出它们的频繁次数,而且要保证其所有k-1长度的子集也是频繁的,值得注意的是,为了避免重复,合并的时候,只合并那些前k-2个字符都相同,而k-1的字符一边是少于另一边的. 以下是算法的Python实现: __author__ = 'linfuyuan' min_frequency = int(raw_input('p

Fuzzy C Means 算法及其 Python 实现——写得很清楚,见原文

Fuzzy C Means 算法及其 Python 实现 转自:http://note4code.com/2015/04/14/fuzzy-c-means-%E7%AE%97%E6%B3%95%E5%8F%8A%E5%85%B6-python-%E5%AE%9E%E7%8E%B0/ 1.  算法向  算法的扩展 在  算法中,如果要将数据集合  划分为  个类,使得任意数据对象  必须属于并且仅属于一个类,同时每一个类至少包含一个数据对象,那么可以用一个  的矩阵  来表示,矩阵中的任意一个元素