[凸包]Triangles

https://nanti.jisuanke.com/t/15429

题目大意:给出平面内$n$个整数坐标点,保证无三点共线。可以进行若干次连线,每次选择一个点对连接线段,但是任意两条线段都不得在给定的$n$个点之外有交点。问连线完成后,最多能构造出多少个三角形。

解题关键:

小于三个点的情况答案为零。考虑三个点的情况,由于三点不共线,必然构成一个三角形。现加入第四个点,若其在原三角形外部,则称其为外点,可以新构造$1$个三角形;若其在原三角形内部,则称其为内点,可以新构造$3$个三角形。故要尽可能让更多的点成为内点。假设这$n$个点的凸包上有$m$个点,这$m$个点必然只能是外点,将凸包剖分成$m - 2$个三角形后,剩余$n - m$个点均为内点,答案即为$3n - 2m - 2$。

其次,凸包模板。

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 struct point{
 5     ll x,y;
 6 }s[1002],p[1002];
 7 int n,top;
 8 double dis(point a,point b){
 9     return sqrt((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y));
10 }
11 double cross(point a,point b,point c,point d){
12     return (b.x-a.x)*(d.y-c.y)-(b.y-a.y)*(d.x-c.x);
13 }
14 bool cmp(point a,point b){
15     double z=cross(p[0],a,p[0],b);
16     return z?z>0:dis(p[0],a)<dis(p[0],b);//这里不确定
17 }
18 void findpoint(){
19     for(int i=1;i<n;i++){
20         if(p[i].y<p[0].y||(p[i].y==p[0].y&&p[i].x<p[0].x)) swap(p[i],p[0]);
21     }
22 }
23 void scanner(){
24     findpoint();
25     sort(p+1,p+n,cmp);
26     s[0]=p[0],s[1]=p[1],top=2;
27     for(int i=2;i<n;i++){
28         while(cross(s[top-2],s[top-1],s[top-1],p[i])<0) top--;
29         s[top++]=p[i];
30     }
31 }
32 int main(){
33     int t;
34     cin>>t;
35     while(t--){
36         memset(p,0,sizeof p);
37         memset(s,0,sizeof s);
38         cin>>n;
39         for(int i=0;i<n;i++){
40             cin>>p[i].x>>p[i].y;
41         }
42         scanner();
43         if(n<3){printf("0\n");continue;}
44         printf("%lld\n",1ll*3*n-2*top-2);
45     }
46 }
时间: 2024-12-28 09:06:08

[凸包]Triangles的相关文章

Voronoi图和Delaunay三角形和凸包

写一下最近写的一点东西... 最近在上算法课,上课老师讲到了维诺图,自己觉得很有意思就研究了一下,并用java写了一个简单的se程序用来显示维诺图和Delaunay三角形还有凸包. 首先介绍一下凸包,凸包在数学里是很常见的,给定一些点,然后找出包含这些的最小凸包,一般是这么做的.至于凸包的定义维基百科或者百度都行,自己查一查就知道,通俗的讲就是延长每一条边,剩下的图形总在边的一边. (界面有点丑) 这边给出一下我程序运行出来的凸包 然后是Delaunay三角形,这个三角形是这样的,可以在凸包里面

POJ3528 HDU3662 三维凸包模板

POJ3528 HDU3662 第一道题 给定若干点 求凸包的表面积,第二题 给定若干点就凸包的面数. 简单说一下三维凸包的求法,首先对于4个点假设不共面,确定了唯一四面体,对于一个新的点,若它不在四面体内,为了让它进入凸包, 则对于所有凸包上的边,若边的一面是该点可以看到的而另一面看不到,则该点与该边构成的面要加入凸包. 模板代码非常清晰, #include<stdio.h> #include<algorithm> #include<string.h> #includ

关于2016.12.12——T1的反思:凸包的意义与应用

2016.12.12 T1 给n个圆,保证圆圆相离,求将圆围起来的最小周长.n<=100 就像上图.考场上,我就想用切线的角度来做凸包.以圆心x,y排序,像点凸包一样,不过用两圆之间的下切线角度来判断. 这就是下切线(我自己瞎编的名字): 好像是对的啊: 然后我就保证必AC的希望,用这种写法交了,然后就只得了N=2的暴力分... 自以为是正解,却落得如此下场... 为什么?这样不对吗?借用学长的力量,果然被Hack掉了: 这种情况,圆心排序后,检测的顺序并不是圆上的切点的顺序,自然就会挂. 蓝瘦

poj 1113 凸包周长

Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33888   Accepted: 11544 Description Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he w

UVA 11800 Determine the Shape --凸包第一题

题意: 给四个点,判断四边形的形状.可能是正方形,矩形,菱形,平行四边形,梯形或普通四边形. 解法: 开始还在纠结怎么将四个点按序排好,如果直接处理的话,有点麻烦,原来凸包就可搞,直接求个凸包,然后点就自动按逆时针排好了,然后就判断就可以了,判断依据题目下面有,主要是用到点积和叉积,判断垂直用点积,判断平行用叉积. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cstd

POJ 3348 最直接的凸包问题

题目大意: 给定一堆树的点,找到能组合成的最大面积,一个物体占50面积,求最多放多少物体 1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algorithm> 5 using namespace std; 6 const double eps = 1e-10; 7 const int N = 10005; 8 double myabs(double x) 9

hdu 1348 Wall(凸包模板题)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1348 Wall Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 3386    Accepted Submission(s): 968 Problem Description Once upon a time there was a gre

1.5.1 Number Triangles 数字金字塔

★1.5.1 Number Triangles 数字金字塔 一.题目描述 考虑在下面被显示的数字金字塔. 写一个程序来计算从最高点开始在底部任意处结束的路径经过数字的和的最大. 每一步可以走到左下方的点也可以到达右下方的点. 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 在上面的样例中,从7 到 3 到 8 到 7 到 5 的路径产生了最大和:30 PROGRAM NAME: numtri 18 INPUT FORMAT 第一个行包含 R(1<= R<=1000) ,表示行的数目

UVA - 12075 Counting Triangles

Description Triangles are polygons with three sides and strictly positive area. Lattice triangles are the triangles all whose vertexes have integer coordinates. In this problem you have to find the number of lattice triangles in anMxN grid. For examp