MySQL · 性能优化 · MySQL常见SQL错误用法

前言

MySQL在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来。但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况。阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题。现将《ApsaraDB专家诊断报告》中出现的部分常见SQL问题总结如下,供大家参考。

常见SQL错误用法

1. LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般DBA想到的办法是在type, name, create_time字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT *
FROM   operation
WHERE  type = ‘SQLStats‘
       AND name = ‘SlowLog‘
ORDER  BY create_time
LIMIT  1000, 10;

好吧,可能90%以上的DBA解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL重新设计如下:

SELECT   *
FROM     operation
WHERE    type = ‘SQLStats‘
AND      name = ‘SlowLog‘
AND      create_time > ‘2017-03-16 14:00:00‘
ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2. 隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT *
     > FROM   my_balance b
     > WHERE  b.bpn = 14000000123
     >       AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index ‘bpn‘ due to type or collation conversion on field ‘bpn‘

其中字段bpn的定义为varchar(20),MySQL的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3. 关联更新、删除

虽然MySQL5.6引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成JOIN。

比如下面UPDATE语句,MySQL实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o
SET    status = ‘applying‘
WHERE  o.id IN (SELECT id
                FROM   (SELECT o.id,
                               o.status
                        FROM   operation o
                        WHERE  o.group = 123
                               AND o.status NOT IN ( ‘done‘ )
                        ORDER  BY o.parent,
                                  o.id
                        LIMIT  1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type        | table | type  | possible_keys | key     | key_len | ref   | rows | Extra                                               |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY            | o     | index |               | PRIMARY | 8       |       | 24   | Using where; Using temporary                        |
| 2  | DEPENDENT SUBQUERY |       |       |               |         |         |       |      | Impossible WHERE noticed after reading const tables |
| 3  | DERIVED            | o     | ref   | idx_2,idx_5   | idx_5   | 8       | const | 1    | Using where; Using filesort                         |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为JOIN之后,子查询的选择模式从DEPENDENT SUBQUERY变成DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o
       JOIN  (SELECT o.id,
                            o.status
                     FROM   operation o
                     WHERE  o.group = 123
                            AND o.status NOT IN ( ‘done‘ )
                     ORDER  BY o.parent,
                               o.id
                     LIMIT  1) t
         ON o.id = t.id
SET    status = ‘applying‘

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key   | key_len | ref   | rows | Extra                                               |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1  | PRIMARY     |       |      |               |       |         |       |      | Impossible WHERE noticed after reading const tables |
| 2  | DERIVED     | o     | ref  | idx_2,idx_5   | idx_5 | 8       | const | 1    | Using where; Using filesort                         |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4. 混合排序

MySQL不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT *
FROM   my_order o
       INNER JOIN my_appraise a ON a.orderid = o.id
ORDER  BY a.is_reply ASC,
          a.appraise_time DESC
LIMIT  0, 20

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type   | possible_keys     | key     | key_len | ref      | rows    | Extra
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
|  1 | SIMPLE      | a     | ALL    | idx_orderid | NULL    | NULL    | NULL    | 1967647 | Using filesort |
|  1 | SIMPLE      | o     | eq_ref | PRIMARY     | PRIMARY | 122     | a.orderid |       1 | NULL           |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于is_reply只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT *
FROM   ((SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 0
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)
        UNION ALL
        (SELECT *
         FROM   my_order o
                INNER JOIN my_appraise a
                        ON a.orderid = o.id
                           AND is_reply = 1
         ORDER  BY appraise_time DESC
         LIMIT  0, 20)) t
ORDER  BY  is_reply ASC,
          appraisetime DESC
LIMIT  20;

5. EXISTS语句

MySQL对待EXISTS子句时,仍然采用嵌套子查询的执行方式。如下面的SQL语句:

SELECT *
FROM   my_neighbor n
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = ‘xxx‘
WHERE  n.topic_status < 4
       AND EXISTS(SELECT 1
                  FROM   message_info m
                  WHERE  n.id = m.neighbor_id
                         AND m.inuser = ‘xxx‘)
       AND n.topic_type <> 5

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type        | table | type | possible_keys     | key   | key_len | ref   | rows    | Extra   |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
|  1 | PRIMARY            | n     | ALL  |  | NULL     | NULL    | NULL  | 1086041 | Using where                   |
|  1 | PRIMARY            | sra   | ref  |  | idx_user_id | 123     | const |       1 | Using where          |
|  2 | DEPENDENT SUBQUERY | m     | ref  |  | idx_message_info   | 122     | const |       1 | Using index condition; Using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉exists更改为join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *
FROM   my_neighbor n
       INNER JOIN message_info m
               ON n.id = m.neighbor_id
                  AND m.inuser = ‘xxx‘
       LEFT JOIN my_neighbor_apply sra
              ON n.id = sra.neighbor_id
                 AND sra.user_id = ‘xxx‘
WHERE  n.topic_status < 4
       AND n.topic_type <> 5

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type   | possible_keys     | key       | key_len | ref   | rows | Extra                 |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
|  1 | SIMPLE      | m     | ref    | | idx_message_info   | 122     | const    |    1 | Using index condition |
|  1 | SIMPLE      | n     | eq_ref | | PRIMARY   | 122     | ighbor_id |    1 | Using where      |
|  1 | SIMPLE      | sra   | ref    | | idx_user_id | 123     | const     |    1 | Using where           |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

6. 条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

  1. 聚合子查询;
  2. 含有LIMIT的子查询;
  3. UNION 或UNION ALL子查询;
  4. 输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT *
FROM   (SELECT target,
               Count(*)
        FROM   operation
        GROUP  BY target) t
WHERE  target = ‘rm-xxxx‘
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table      | type  | possible_keys | key         | key_len | ref   | rows | Extra       |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
|  1 | PRIMARY     | <derived2> | ref   | <auto_key0>   | <auto_key0> | 514     | const |    2 | Using where |
|  2 | DERIVED     | operation  | index | idx_4         | idx_4       | 519     | NULL  |   20 | Using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target,
       Count(*)
FROM   operation
WHERE  target = ‘rm-xxxx‘
GROUP  BY target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

关于MySQL外部条件不能下推的详细解释说明请参考以前文章:MySQL · 性能优化 · 条件下推到物化表

7. 提前缩小范围

先上初始SQL语句:

SELECT *
FROM   my_order o
       LEFT JOIN my_userinfo u
              ON o.uid = u.uid
       LEFT JOIN my_productinfo p
              ON o.pid = p.pid
WHERE  ( o.display = 0 )
       AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type   | possible_keys | key     | key_len | ref             | rows   | Extra                                              |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
|  1 | SIMPLE      | o     | ALL    | NULL          | NULL    | NULL    | NULL            | 909119 | Using where; Using temporary; Using filesort       |
|  1 | SIMPLE      | u     | eq_ref | PRIMARY       | PRIMARY | 4       | o.uid |      1 | NULL                                               |
|  1 | SIMPLE      | p     | ALL    | PRIMARY       | NULL    | NULL    | NULL            |      6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后WHERE条件以及排序均针对最左主表,因此可以先对my_order排序提前缩小数据量再做左连接。SQL重写后如下,执行时间缩小为1毫秒左右。

SELECT *
FROM (
SELECT *
FROM   my_order o
WHERE  ( o.display = 0 )
       AND ( o.ostaus = 1 )
ORDER  BY o.selltime DESC
LIMIT  0, 15
) o
     LEFT JOIN my_userinfo u
              ON o.uid = u.uid
     LEFT JOIN my_productinfo p
              ON o.pid = p.pid
ORDER BY  o.selltime DESC
limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及LIMIT 子句后,实际执行时间变得很小。


+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table      | type   | possible_keys | key     | key_len | ref   | rows   | Extra                                              |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
|  1 | PRIMARY     | <derived2> | ALL    | NULL          | NULL    | NULL    | NULL  |     15 | Using temporary; Using filesort                    |
|  1 | PRIMARY     | u          | eq_ref | PRIMARY       | PRIMARY | 4       | o.uid |      1 | NULL                                               |
|  1 | PRIMARY     | p          | ALL    | PRIMARY       | NULL    | NULL    | NULL  |      6 | Using where; Using join buffer (Block Nested Loop) |
|  2 | DERIVED     | o          | index  | NULL          | idx_1   | 5       | NULL  | 909112 | Using where                                        |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8. 中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT    a.*,
          c.allocated
FROM      (
              SELECT   resourceid
              FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = ‘1234567‘
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (
              SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
              FROM     my_resources
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表resourceid能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT    a.*,
          c.allocated
FROM      (
                   SELECT   resourceid
                   FROM     my_distribute d
                   WHERE    isdelete = 0
                   AND      cusmanagercode = ‘1234567‘
                   ORDER BY salecode limit 20) a
LEFT JOIN
          (
                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            (
                                     SELECT   resourceid
                                     FROM     my_distribute d
                                     WHERE    isdelete = 0
                                     AND      cusmanagercode = ‘1234567‘
                                     ORDER BY salecode limit 20) a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用WITH语句再次重写:

WITH a AS
(
         SELECT   resourceid
         FROM     my_distribute d
         WHERE    isdelete = 0
         AND      cusmanagercode = ‘1234567‘
         ORDER BY salecode limit 20)
SELECT    a.*,
          c.allocated
FROM      a
LEFT JOIN
          (
                   SELECT   resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
                   FROM     my_resources r,
                            a
                   WHERE    r.resourcesid = a.resourcesid
                   GROUP BY resourcesid) c
ON        a.resourceid = c.resourcesid

AliSQL即将推出WITH语法,敬请期待。

总结

  1. 数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。
  2. 程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。
  3. 编写复杂SQL语句要养成使用WITH语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 ^^。
  4. 使用云上数据库遇到难点(不局限于SQL问题),随时寻求阿里云原厂专家服务的帮助。

    转载:http://mysql.taobao.org/monthly/2017/03/03/

时间: 2024-10-08 18:11:41

MySQL · 性能优化 · MySQL常见SQL错误用法的相关文章

MySQL · 性能优化 · MySQL常见SQL错误用法

1. LIMIT 语句 分页查询是最常用的场景之一,但也通常也是最容易出问题的地方.比如对于下面简单的语句,一般DBA想到的办法是在type, name, create_time字段上加组合索引.这样条件排序都能有效的利用到索引,性能迅速提升. SELECT * FROM operation WHERE type = 'SQLStats' AND name = 'SlowLog' ORDER BY create_time LIMIT 1000, 10; 好吧,可能90%以上的DBA解决该问题就到

mysql 性能优化常见命令

mysql 性能优化常见命令: 一: 当发现mysql程序运行缓慢时,在排除sql主机问题之后,可以尝试在schema,table,和sql上进一步进行考查: 1:mysql> show full processlist; +----+------+-----------+------+---------+------+-------+-----------------------+-----------+---------------+ | Id | User | Host | db | Co

MySQL 性能优化---索引及优化

博主QQ:819594300 博客地址:http://zpf666.blog.51cto.com/ 有什么疑问的朋友可以联系博主,博主会帮你们解答,谢谢支持! 一.MySQL性能优化之-影响性能的因素 1.商业需求的影响 Myisam存储引擎内置一个计数器,count(*)时直接从计数器读取:而通过innodb存储引擎查找某个数据时,是必须扫描全表的,所以当执行对表的统计(即使用count(*)函数)时,myisam要比innodb要快的很多.所以一般在innodb上执行count(*)时一般要

MySQL性能优化(二)

1.MySQL基础操作 一:MySQL基础操作 1:MySQL表复制 复制表结构 + 复制表数据 create table t3 like t1; --创建一个和t1一样的表,用like(表结构也一样) insert into t3 select * from t1; --t1的数据全部拿过来,注意是表结构一致才select* ,否则选择相应的的字段列插入 create table t1( id int unsigned not null auto_increment primary key,

mysql性能优化-索引与优化

http://hongge.blog.51cto.com/ 一.MySQL性能优化之-影响性能的因素 1.商业需求的影响 不合理需求造成资源投入产出比过低,这里我们就用一个看上去很简单的功能来分析一下. 需求:一个论坛帖子总量的统计,附加要求:实时更新 从功能上来看非常容易实现,执行一条SELECT COUNT(*) from 表名 的Query 就可以得到结果.但是,如果我们采用不是MyISAM 存储引擎,而是使用的Innodb 的存储引擎,那么大家可以试想一下,如果存放帖子的表中已经有上千万

MySQL配置文件mysql.ini参数详解、MySQL性能优化

MySQL配置文件mysql.ini参数详解.MySQL性能优化 my.ini(Linux系统下是my.cnf),当mysql服务器启动时它会读取这个文件,设置相关的运行环境参数. my.ini分为两块:Client Section和Server Section.   Client Section用来配置MySQL客户端参数.   要查看配置参数可以用下面的命令: show variables like '%innodb%'; # 查看innodb相关配置参数 show status like

MYSQL之性能优化 ----MySQL性能优化必备25条

今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我 们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数据库时(尤其是查表时的SQL语句),我们都需要注意数据操作的性能.这里,我们不会讲过 多的SQL语句的优化,而只是针对MySQL这一Web应用最多的数据库.希望下面的这些优化技巧对你有用. 1. 为查询缓存优化你的查询 大多数的MySQL服务器都开启了查询缓存.这是提高性最有效的方法之一,而且这是被

mysql性能优化教程(转)

Mysql 性能优化教程 目录 目录 背景及目标 Mysql 执行优化 认识数据索引 为什么使用数据索引能提高效率 如何理解数据索引的结构 如何理解影响结果集 理解执行状态 常见分析手段 分析流程 总结 Mysql 运维优化 存储引擎类型 内存使用考量 性能与安全性考量 存储压力优化 运维监控体系 Mysql 架构优化 架构优化目标 防止单点隐患 方便系统扩容 安全可控,成本可控 分布式方案 分库&拆表方案 主从架构 故障转移处理 缓存方案 缓存结合数据库的读取 缓存结合数据库的写入      

MySQL 性能优化的最佳20多条经验分享

今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的                    事,而这更是我们程序员需要去关注的事情. 当我们去设计数据库表结构,对操作数据库时(尤其是查表时的SQL语句),我们都需要注意数据操作的性能.这里,我们不会讲过多的SQL语                句的优化,而只是针对MySQL这一Web应用最多的数据库.希望下面的这些优化技巧对你有用. 1. 为查询缓存优化你的查询 大多数的M