Spark1.0.0伪分布安装指南

?一、下载须知

软件准备:

spark-1.0.0-bin-hadoop1.tgz   下载地址:spark1.0.0

scala-2.10.4.tgz    下载下载:Scala 2.10.4

hadoop-1.2.1-bin.tar.gz   下载地址:hadoop-1.2.1-bin.tar.gz

jdk-7u60-linux-i586.tar.gz  下载地址:去官网下载就行,这个1.7.x都行

二、安装步骤

hadoop-1.2.1安装步骤,请看: http://my.oschina.net/dataRunner/blog/292584

1.解压:

tar -zxvf scala-2.10.4.tgz 
mv  scala-2.10.4 scala

tar -zxvf spark-1.0.0-bin-hadoop1.tgz 
mv spark-1.0.0-bin-hadoop1 spark

2. 配置环境变量:

vim /etc/profile   (在最后一行加入以下内容就行)

export HADOOP_HOME_WARN_SUPPRESS=1

export JAVA_HOME=/home/big_data/jdk
export JRE_HOME=${JAVA_HOME}/jre
export CLASS_PATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib

export HADOOP_HOME=/home/big_data/hadoop
export HIVE_HOME=/home/big_data/hive
export SCALA_HOME=/home/big_data/scala
export SPARK_HOME=/home/big_data/spark

export PATH=.:$SPARK_HOME/bin:$SCALA_HOME/bin:$HIVE_HOME/bin:$HADOOP_HOME/bin:$JAVA_HOME/bin:$PATH

3.修改spark的spark-env.sh文件

cd spark/conf
cp spark-env.sh.template  spark-env.sh

vim spark-env.sh  (在最后一行加入以下内容就行)
export JAVA_HOME=/home/big_data/jdk
export SCALA_HOME=/home/big_data/scala

export SPARK_MASTER_IP=192.168.80.100
export SPARK_WORKER_MEMORY=200m

export HADOOP_CONF_DIR=/home/big_data/hadoop/conf

然后就配置完毕勒!!!(就这么简单,艹,很多人都知道,但是共享的人太少勒)

三、测试步骤

hadoop-1.2.1测试步骤,请看: http://my.oschina.net/dataRunner/blog/292584

1.验证scala

[[email protected] ~]# scala -version
Scala code runner version 2.10.4 -- Copyright 2002-2013, LAMP/EPFL
[[email protected] ~]# 
[[email protected] big_data]# scala
Welcome to Scala version 2.10.4 (Java HotSpot(TM) Client VM, Java 1.7.0_60).
Type in expressions to have them evaluated.
Type :help for more information.

scala> 1+1
res0: Int = 2

scala> :q

2.验证spark  (先启动hadoop-dfs.sh)

[[email protected] big_data]# cd spark
[[email protected] spark]# cd sbin/start-all.sh
( 也可以分别启动
[[email protected] spark]$ sbin/start-master.sh
可以通过 http://master:8080/ 看到对应界面
[[email protected] spark]$ sbin/start-slaves.sh park://master:7077
可以通过 http://master:8081/ 看到对应界面
)
[[email protected] spark]# jps
[[email protected] ~]# jps
4629 NameNode  (hadoop的)
5007 Master   (spark的)
6150 Jps
4832 SecondaryNameNode  (hadoop的)
5107 Worker  (spark的)
4734 DataNode  (hadoop的)

可以通过 http://192.168.80.100:8080/ 看到对应界面   

[[email protected] big_data]# spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
14/07/20 21:41:04 INFO spark.SecurityManager: Changing view acls to: root
14/07/20 21:41:04 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(root)
14/07/20 21:41:04 INFO spark.HttpServer: Starting HTTP Server
14/07/20 21:41:05 INFO server.Server: jetty-8.y.z-SNAPSHOT
14/07/20 21:41:05 INFO server.AbstractConnector: Started [email protected]:43343
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  ‘_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.0.0
      /_/

Using Scala version 2.10.4 (Java HotSpot(TM) Client VM, Java 1.7.0_60)

。。。

scala> 
可以通过 http://192.168.80.100:4040/ 看到对应界面  

(随便上传一个文件,里面随便一些英文单词,到hdfs上面) 
scala> val file=sc.textFile("hdfs://master:9000/input")
14/07/20 21:51:05 INFO storage.MemoryStore: ensureFreeSpace(608) called with curMem=31527, maxMem=311387750
14/07/20 21:51:05 INFO storage.MemoryStore: Block broadcast_1 stored as values to memory (estimated size 608.0 B, free 296.9 MB)
file: org.apache.spark.rdd.RDD[String] = MappedRDD[5] at textFile at <console>:12

scala> val count=file.flatMap(line=>line.split(" ")).map(word=>(word,1)).reduceByKey(_+_)
14/07/20 21:51:14 INFO mapred.FileInputFormat: Total input paths to process : 1
count: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[10] at reduceByKey at <console>:14

scala> count.collect()
14/07/20 21:51:48 INFO spark.SparkContext: Job finished: collect at <console>:17, took 2.482381535 s
res0: Array[(String, Int)] = Array((previously-registered,1), (this,3), (Spark,1), (it,3), (original,1), (than,1), (its,1), (previously,1), (have,2), (upon,1), (order,2), (whenever,1), (it’s,1), (could,3), (Configuration,1), (Master‘s,1), (SPARK_DAEMON_JAVA_OPTS,1), (This,2), (which,2), (applications,2), (register,,1), (doing,1), (for,3), (just,2), (used,1), (any,1), (go,1), ((equivalent,1), (Master,4), (killing,1), (time,1), (availability,,1), (stop-master.sh,1), (process.,1), (Future,1), (node,1), (the,9), (Workers,1), (however,,1), (up,2), (Details,1), (not,3), (recovered,1), (process,1), (enable,3), (spark-env,1), (enough,1), (can,4), (if,3), (While,2), (provided,1), (be,5), (mode.,1), (minute,1), (When,1), (all,2), (written,1), (store,1), (enter,1), (then,1), (as,1), (officially,1)...
scala> 
scala> count.saveAsTextFile("hdfs://master:9000/output")   (结果保存到hdfs上的/output文件夹下)

scala> :q
Stopping spark context.

[[email protected] ~]# hadoop fs -ls /       
Found 3 items
drwxr-xr-x   - root supergroup          0 2014-07-18 21:10 /home
-rw-r--r--   1 root supergroup       1722 2014-07-18 06:18 /input
drwxr-xr-x   - root supergroup          0 2014-07-20 21:53 /output
[[email protected] ~]# 
[[email protected] ~]# hadoop fs -cat /output/p*
。。。
(mount,1)
(production-level,1)
(recovery).,1)
(Workers/applications,1)
(perspective.,1)
(so,2)
(and,1)
(ZooKeeper,2)
(System,1)
(needs,1)
(property       Meaning,1)
(solution,1)
(seems,1)

好了我们安装测试完成,入门教程到此结束!

你可以兴奋的笑一笑,艹,原来spark这么简单。(伪分布噢,呵呵,供学习用)

你如果喜欢这种共享精神,请加入我们

------------------------------------------------------------------------------------------------------------

本文author:数据的开拓者成员之一 江中炼

QQ群:248087140

座右铭:

你在你擅长的领域牛逼,

并带着一群小白变牛逼,

别人会发自内心的去尊重你的。

--可点击加入我们

Spark1.0.0伪分布安装指南,布布扣,bubuko.com

时间: 2024-10-06 08:13:55

Spark1.0.0伪分布安装指南的相关文章

Hadoop 2.2.0的伪分布集群环境搭建

Hadoop伪分布环境搭建的“三步”总流程 第一 .Jdk安装和环境变量配置 1.先检测一下,jdk是否安装 java - version 2.查看下CentOS的位数 file /bin/ls 3.切换到usr/,创建java/目录 cd / ls cd usr/ mkdir java cd java/ ls 4.上传本地下载好的 ,显示上传命令没有安装 rz 5 .下载rz .sz命令 yum -y install lrzsz 6 .上传本地下载好的 jdk-7u79-linux-x64.t

hadoop1.1.0的伪分布搭建步骤

-------------------------------------------------- 一.单节点的安装 1.伪分布式的安装 1.1 改动ip (1)打开VMWare或者VirtualBox的虚拟网卡 (2)在VMWare或者VirtualBox设置网络连接方式为host-only (3)在linux中,改动ip.有上角的图标,右键,选择Edit  Connections.... ****ip必须与windows下虚拟网卡的ip在同一个网段,网关必须是存在的. (4)重新启动网卡.

hadoop1.2.1伪分布安装指南

1.伪分布式的安装 1.1 修改ip (1)打开VMWare或者VirtualBox的虚拟网卡 (2)在VMWare或者VirtualBox设置网络连接方式为host-only (3)在linux中,修改ip.有上角的图标,右键,选择Edit  Connections.... ****ip必须与windows下虚拟网卡的ip在同一个网段,网关必须是存在的. (4)重启网卡,执行命令service network restart ****报错,如no suitable adapter错误, (5)

Spark-1.4.0单机部署(Hadoop-2.6.0采用伪分布式)【已测】

??目前手上只有一个机器,就先拿来练下手(事先服务器上没有安装软件)尝试一下Spark的单机部署. ??几个参数: ??JDK-1.7+ ??Hadoop-2.6.0(伪分布式): ??Scala-2.10.5: ??Spark-1.4.0: ??下面是具体的配置过程 安装JDK 1.7+ [下载网址]http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 环境变量设置(最好不要采用o

Hadoop2.6.0伪分布环境搭建

用到的软件: 一.安装jdk: 1.要安装的jdk,我把它拷在了共享文件夹里面.   (用优盘拷也可以) 2.我把jdk拷在了用户文件夹下面. (其他地方也可以,不过路径要相应改变) 3.执行复制安装解压命令: 解压完毕: 查看解压的文件夹: 4.配置 环境变量: 写入如下5行代码: 使配置生效: 5.查看安装的jdk: java -version java javac 二.SSH免密码登陆: 1.安装SSH: 2.是否生成 .ssh 目录: 3.如果没有生成,自己手动创建一个 .ssh 目录:

Hadoop2.0 伪分布环境的搭建

准备Linux环境[JAVA,IP,hostname,hosts,iptables,chkconfig,ssh] 不会配置的找1.0下面的伪分布环境搭建 下载稳定版2.2.0 修改etc/hadoop目录下的配置文件core-site.xml,hdfs-site.xml,yarn-site.xml,mapred-site.xml 文件core-site.xml <configuration> <property> <name>fs.defaultFS</name&

Hadoop2.6.0安装—单机/伪分布

目录 环境准备 创建hadoop用户 更新apt 配置SSH免密登陆 安装配置Java环境 安装Hadoop Hadoop单机/伪分布配置 单机Hadoop 伪分布Hadoop 启动Hadoop 停止Hadoop 作者: vincent_zh时间:2016-10-16 出处:http://www.cnblogs.com/vincentzh/p/5967274.html 声明:本文以学习.研究和分享为主,如需转载,标明作者和出处,非商业用途! 环境准备 此处准备的环境是Virtual Box虚拟机

hadoop2.6.0 + hbase-1.0.0 伪分布配置

1 基本配置 主机名: 192.168.145.154 hadoop2 ======= 2 etc/hadoop下文件配置 1)core-site.xml <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://hadoop2:8020</value> </property> <property> <name>io.fil

Hadoop-1.2.1伪分布下 hive-0.10.0内嵌模式安装

Hadoop-1.2.1伪分布下 hive-0.10.0内嵌模式安装 1.下载hive-0.10.0 网址是:http://archive.apache.org/dist/hive/hive-0.10.0/   下载的安装包为:hive-0.10.0.tar.gz   2012-12-18 23:21  35M  2.把hive-0.10.0拷进 /usr/ 目录下,并进行解压 tar  –zxvf hive-0.10.0.tar.gz 解压完毕如下图: 3.修改文件名.修改hive文件权限.删