一、Dijkstra算法(贪心地求最短距离的算法)
在此算法中,我按照自己的理解去命名,理解起来会轻松一些。
#define MAXSIZE 100 #define UNVISITED 0 #define VISITED 1 #define INFINITY 66666 typedef struct tool { int visited[MAXSIZE]; /*是否已访问的数组,visited[i]表示顶点i已经访问,也就是到顶点i的最短距离已求出*/ int known_shortest_distance[MAXSIZE]; /*已知的最短距离数组。known_shortest_distance[i]代表从V0到Vi的最短距离*/ int previous_vertex[MAXSIZE]; /*previous_vertex[i]=j,代表:在从V0到Vi的最短路径上,顶点i的前一个顶点是顶点j*/ } Tool; typedef struct gragh { int num_of_vertexes; int adjacent_matrix[MAXSIZE][MAXSIZE]; } Gragh; void init_tool(Gragh g, Tool &t) { int i = 0; for(i = 0; i < g.num_of_vertexes; i++) { t.visited[i] = UNVISITED; t.known_shortest_distance[i] = g.adjacent_matrix[0][i]; t.previous_vertex[i] = 0; } } void dijstra_shortest_distance(Gragh g, Tool &t) { int i, j, x; //循环变量 int min_distance, x_index; /*min_distance存储的是当前已知的最短距离数组中从V0到Vx最小的距离; x_index存储的Vx的下标*/ init_tool(g, t); for(i = 0; i < g.num_of_vertexes; i++) { min_distance = INFINITY; for(x = 0; x < g.num_of_vertexes; x++) { if(!t.visited[x] && t.known_shortest_distance[x] < min_distance) { min_distance = t.known_shortest_distance[x]; x_index = x; } } /*通过上面一个循环,最短距离数组中的最小值就是min_distance; 该顶点的下标就是x_index; 在当前没有访问且以V0为起点距离最短的顶点中, 这个点的下标就是x_index.*/ t.visited[x_index] = VISITED; for(j = 0; j < g.num_of_vertexes; j++) { if(!t.visited[j] && (min_distance + g.adjacent_matrix[x_index][j] < t.known_shortest_distance[j])) { t.known_shortest_distance[j] = min_distance + g.adjacent_matrix[x_index][j]; t.previous_vertex[j] = x_index; } } } }
一、Floyd算法(不管三七二十一,先把整个图中任意两点的最短距离求出再说)
typedef struct floyd_tool { int known_shortest_distance[MAXSIZE][MAXSIZE]; /*已知的最短距离数组。known_shortest_distance[i][j]代表从Vi到Vj的最短距离*/ int path_matrix[MAXSIZE][MAXSIZE]; /*path_matrix[i][j]=k,代表:在从Vi到Vj的最短路径上,要经过顶点k; 用k代替i,直到path_matrix[k][j]=j*/ } FloydTool; void init_floyd_tool(FloydTool &ft, Gragh g) { for(int i = 0; i < g.num_of_vertexes; i++) { for(int j = 0; j < g.num_of_vertexes; j++) { ft.known_shortest_distance[i][j] = g.adjacent_matrix[i][j]; ft.path_matrix[i][j] = j; } } } void floyd_shortest_distance(Gragh g,FloydTool &ft) { init_floyd_tool(ft,g); for(int i = 0;i < g.num_of_vertexes; i++){ for(int j = 0;j < g.num_of_vertexes;j++){ for(int k = 0;k < g.num_of_vertexes;k++){ if(ft.known_shortest_distance[j][k] > ft.known_shortest_distance[j][i] + ft.known_shortest_distance[i][k]){ ft.known_shortest_distance[j][k] = ft.known_shortest_distance[j][i] + ft.known_shortest_distance[i][k]; ft.path_matrix[j][k] = ft.path_matrix[j][i]; } } } } }
改进版:
void floyd_shortest_distance(Gragh g,FloydTool &ft) { init_floyd_tool(ft,g); for(int i = 0;i < g.num_of_vertexes; i++){ for(int j = 0;j < g.num_of_vertexes;j++){ if(ft.known_shortest_distance[j][i] == INFINITY)continue; for(int k = j + 1;k < g.num_of_vertexes;k++){ if(ft.known_shortest_distance[k][i] == INFINITY)continue; if(ft.known_shortest_distance[j][k] > ft.known_shortest_distance[j][i] + ft.known_shortest_distance[i][k]){ ft.known_shortest_distance[j][k] = ft.known_shortest_distance[j][i] + ft.known_shortest_distance[i][k]; ft.path_matrix[j][k] = ft.path_matrix[j][i]; } } } } }
时间: 2024-10-20 14:10:53