ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)

Description

You want to hold a party. Here‘s a polygon-shaped cake on the table. You‘d like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two vertices
of the polygon. Within the polygon, any two cuts ought to be disjoint. Of course, the situation that only the endpoints of two segments intersect is allowed.

The cake‘s considered as a coordinate system. You have known the coordinates of vexteces. Each cut has a cost related to the coordinate of the vertex, whose formula is
costi, j = |xi + xj| * |yi + yj| % p. You want to calculate the minimum cost.

NOTICE: input assures that NO three adjacent vertices on the polygon-shaped cake are in a line. And the cake is not always a convex.

Input

There‘re multiple cases. There‘s a blank line between two cases. The first line of each case contains two integers,
N and p (3 ≤ N, p ≤ 300), indicating the number of vertices. Each line of the following
N lines contains two integers, x and y (-10000 ≤
x, y ≤ 10000), indicating the coordinate of a vertex. You have known that no two vertices are in the same coordinate.

Output

If the cake is not convex polygon-shaped, output "I can‘t cut.". Otherwise, output the minimum cost.

Sample Input

3 3
0 0
1 1
0 2

Sample Output

0
题意:给定n个点的坐标,先问这些点能否组成一个凸包,假设是凸包,问用不相交的线来切这个凸包使得凸包仅仅由三角形组成。依据costi, j = |xi + xj| * |yi + yj| % p
算切线的费用,问最少的分割费用。

思路:第一次做凸包,抄模板,ZeroClock 图画的非常好,就不反复了
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 1005;
const int inf = 1000000000;

struct point {
	int x, y;
} p[maxn], save[maxn], tmp[maxn];
int cost[maxn][maxn], n, m;
int dp[maxn][maxn];

int dis(point p1, point p2, point p0) {
	return (p1.x-p0.x) * (p2.y-p0.y) - (p2.x-p0.x) * (p1.y-p0.y);
}

bool cmp(const point &a, const point &b) {
	if (a.y == b.y) return a.x < b.x;
	return a.y < b.y;
}

int Graham(point *p,int n) {
	sort(p,p + n,cmp);
	save[0] = p[0];
	save[1] = p[1];
	int top = 1;
	for (int i = 0;i < n; i++) {
		while (top && dis(save[top],p[i],save[top-1]) >= 0) top--;
		save[++top] = p[i];
	}  

	int mid = top;
	for(int i = n - 2; i >= 0; i--) {
		while (top > mid && dis(save[top],p[i],save[top-1])>=0) top--;
		save[++top]=p[i];
	}
	return top;
}  

int Count(point a, point b) {
	return (abs(a.x+b.x) * abs(a.y+b.y)) % m;
}

int main() {
	while (scanf("%d%d",&n,&m) != EOF) {
		for (int i = 0; i < n; ++i)
			scanf("%d%d",&p[i].x,&p[i].y);  

		int tot = Graham(p,n);  //求凸包
		if (tot != n) printf("I can‘t cut.\n");
		else {
			memset(cost,0,sizeof(cost));
			for (int i = 0; i < n; ++i)
				for (int j = i + 2; j < n; ++j)
					cost[i][j] = cost[j][i] = Count(save[i],save[j]);  

			for (int i = 0; i < n; ++i) {
				for (int j = 0; j < n; ++j)
					dp[i][j] = inf;
				dp[i][(i+1)%n] = 0;
			} 

			for (int i = n - 3; i >= 0; i--)
				for (int j = i + 2; j < n; j++)
					for (int k = i + 1; k <= j - 1; k++)
						dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]);
			printf("%d\n",dp[0][n-1]);
		}
	}
	return 0;
}

时间: 2024-10-20 11:16:53

ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)的相关文章

ZOJ 3537 Cake (区间DP,三角形剖分)

题意: 给出平面直角坐标系上的n个点的坐标,表示一个多边形蛋糕,先判断是否是凸多边形,若否,输出"I can't cut.".若是,则对这个蛋糕进行3角形剖分,切n-3次变成n-2份三角形蛋糕给小伙伴吃,但是每切一次需要一个费用,公式是:cost[i][j] = |xi + xj| * |yi + yj| % p 表示在两点i和j之间切一刀的费用.问最少费用是多少? 思路: 判断是否凸多边形需要用到求凸包的Andrew算法,时间复杂度为O(nlogn),然后判断凸包内的点数是否为n就行

zoj 3537 Cake (凸包判定+区间dp)

Cake Time Limit: 1 Second      Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of eac

ZOJ 3537 Cake(凸包+区间DP)

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3537 题目大意:给出一些点表示多边形顶点的位置,如果不是凸多边形(凸包)则不能切,直接输出"I can't cut."切多边形时每次只能在顶点和顶点间切,每切一次的花费为 cost(i, j) = |xi + xj| * |yi + yj| % p.问把多边形切成最多个不相交三角形的最小代价是多少. 解题思路:先求出凸包,接着可以用区间DP解决,设dp

ZOJ 3537 Cake 求凸包 区间DP

题意:给出一些点表示多边形顶点的位置(如果多边形是凹多边形就不能切),切多边形时每次只能在顶点和顶点间切,每切一次都有相应的代价.现在已经给出计算代价的公式,问把多边形切成最多个不相交三角形的最小代价是多少. 思路:首先判断多边形是否是凸多边形,之后就是区间dp了. 求出凸包后,按逆时针来看. 设置dp[i][j]为从顶点i到顶点j所围成凸多边形的最优解. 枚举切点k (i < k < j) dp[i][j] = min(dp[i][k] + dp[k][j] + cost[i][k] + c

zoj 3537 Cake (凸包确定+间隔dp)

Cake Time Limit: 1 Second      Memory Limit: 32768 KB You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of eac

zoj 3537 Cake(区间dp)

这道题目是经典的凸包的最优三角剖分,不过这个题目给的可能不是凸包,所以要提前判定一下是否为凸包,如果是凸包的话才能继续剖分,dp[i][j]表示已经排好序的凸包上的点i->j上被分割成一个个小三角形的最小费用,那么dp[i][j] = min(dp[i][k]+dp[k][j]+cost[i][k]+cost[k][j]),其中,(j >= i+ 3,i+1<=k<=j-1,cost[i][k]为连一条i到k的线的费用). 上一个图,来自博客http://blog.csdn.net

ZOJ - 3537 —— Cake

题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23543 1. 因为没有三个点在同一直线上,即每个点都是多边形的一个顶点而不会有点在某条边上,所以要判断这个多边形是不是凸多边性,可以用像凸包问题那样做,得到的凸包的关节点以及它们的个数num,若num==n (全体点的个数),那么是凸多边形:否则,不是凸多边形. 2. 如果判断是凸多边形后,就要开始正式的DP了. 我们都知道,这种成环的数组的DP,可以将环拆开,变成区

ZOJ 3537 Cake

区间DP. 首先求凸包判断是否为凸多边形. 如果是凸多边形:假设现在要切割连续的一段点,最外面两个一定是要切一刀的,内部怎么切达到最优解就是求子区间最优解,因此可以区间DP. #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> using namespace std; const int MAXN = 1000; con

Cake(凸包+区间DP)

You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut the cake into several triangle-shaped parts for the invited comers. You have a knife to cut. The trace of each cut is a line segment, whose two endpoints are two v