ArrayMap代码分析

  Java提供了HashMap,但是HashMap对于手机端而言,对空间的利用太大,所以Android提供了SparseArray和ArrayMap。二者都是基于二分查找,所以数据量大的时候,最坏效率会比HashMap慢很多。因此建议数量在千以内比较合适。

一、SparseArray

  SparseArray对应的key只能是int类型,它不会对key进行装箱操作。它使用了两个数组,一个保存key,一个保存value。

  SparseArray使用二分查找来找到key对应的插入位置。所以要保证mKeys数组有序。

  remove的时候不会立刻重新清理删除掉的数据,而是将对一个的数据标记为DELETE(一个Object对象)。在必要的环节调用gc清理标记为DELETE的空间。

二、ArrayMap

  重点介绍一下ArrayMap。

  首先从ArrayMap的四个数组说起。mHashes,用于保存key对应的hashCode;mArray,用于保存键值对(key,value),其结构为[key1,value1,key2,value2,key3,value3,......];mBaseCache,缓存,如果ArrayMap的数据量从4,增加到8,用该数组保存之前使用的mHashes和mArray,这样如果数据量再变回4的时候,可以再次使用之前的数组,不需要再次申请空间,这样节省了一定的时间;mTwiceBaseCache,与mBaseCache对应,不过触发的条件是数据量从8增长到12。

  上面提到的数据量有8增长到12,为什么不是16?这也算是ArrayMap的一个优化的点,它不是每次增长1倍,而是使用了如下方法(mSize+(mSize>>1)),即每次增加1/2。

  有了上面的说明,读懂代码就容易多了。

  1、很多地方用到的indexOf

    这里使用了二分查找来查找对应的index

int indexOf(Object key, int hash) {
        final int N = mSize;

        // Important fast case: if nothing is in here, nothing to look for.
        //数组为空,直接返回
        if (N == 0) {
            return ~0;
        }

        //二分查找,不细说了
        int index = ContainerHelpers.binarySearch(mHashes, N, hash);

        // If the hash code wasn‘t found, then we have no entry for this key.
        //没找到hashCode,返回index,一个负数
        if (index < 0) {
            return index;
        }

        // If the key at the returned index matches, that‘s what we want.
        //对比key值,相同则返回index
        if (key.equals(mArray[index<<1])) {
            return index;
        }

        // Search for a matching key after the index.
        //如果返回的index对应的key值,与传入的key值不等,则可能对应的key在index后面
        int end;
        for (end = index + 1; end < N && mHashes[end] == hash; end++) {
            if (key.equals(mArray[end << 1])) return end;
        }

        // Search for a matching key before the index.
        //接上句,后面没有,那一定在前面。
        for (int i = index - 1; i >= 0 && mHashes[i] == hash; i--) {
            if (key.equals(mArray[i << 1])) return i;
        }

        // Key not found -- return negative value indicating where a
        // new entry for this key should go.  We use the end of the
        // hash chain to reduce the number of array entries that will
        // need to be copied when inserting.
        //毛都没找到,那肯定是没有了,返回个负数
        return ~end;
    }

  2、看一下put方法

public V put(K key, V value) {
        final int hash;
        int index;
        //key是空,则通过indexOfNull查找对应的index;如果不为空,通过indexOf查找对应的index
        if (key == null) {
            hash = 0;
            index = indexOfNull();
        } else {
            hash = key.hashCode();
            index = indexOf(key, hash);
        }

        //index大于或等于0,一定是之前put过相同的key,直接替换对应的value。因为mArray中不只保存了value,还保存了key。
        //其结构为[key1,value1,key2,value2,key3,value3,......]
        //所以,需要将index乘2对应key,index乘2再加1对应value
        if (index >= 0) {
            index = (index<<1) + 1;
            final V old = (V)mArray[index];
            mArray[index] = value;
            return old;
        }

        //取正数
        index = ~index;
        //mSize的大小,即已经保存的数据量与mHashes的长度相同了,需要扩容啦
        if (mSize >= mHashes.length) {
            //扩容后的大小,有以下几个档位,BASE_SIZE(4),BASE_SIZE的2倍(8),mSize+(mSize>>1)(比之前的数据量扩容1/2)
            final int n = mSize >= (BASE_SIZE*2) ? (mSize+(mSize>>1))
                    : (mSize >= BASE_SIZE ? (BASE_SIZE*2) : BASE_SIZE);

            if (DEBUG) Log.d(TAG, "put: grow from " + mHashes.length + " to " + n);

            final int[] ohashes = mHashes;
            final Object[] oarray = mArray;
            //扩容方法的实现
            allocArrays(n);

            //扩容后,需要把原来的数据拷贝到新数组中
            if (mHashes.length > 0) {
                if (DEBUG) Log.d(TAG, "put: copy 0-" + mSize + " to 0");
                System.arraycopy(ohashes, 0, mHashes, 0, ohashes.length);
                System.arraycopy(oarray, 0, mArray, 0, oarray.length);
            }

            //看看被废弃的数组是否还有利用价值
            //如果被废弃的数组的数据量为4或8,说明可能利用价值,以后用到的时候可以直接用。
            //如果被废弃的数据量太大,扔了算了,要不太占内存。如果浪费内存了,还费这么大劲,加了类干啥。
            freeArrays(ohashes, oarray, mSize);
        }

        //这次put的key对应的hashcode排序没有排在最后(index没有指示到数组结尾),因此需要移动index后面的数据
        if (index < mSize) {
            if (DEBUG) Log.d(TAG, "put: move " + index + "-" + (mSize-index)
                    + " to " + (index+1));
            System.arraycopy(mHashes, index, mHashes, index + 1, mSize - index);
            System.arraycopy(mArray, index << 1, mArray, (index + 1) << 1, (mSize - index) << 1);
        }

        //把数据保存到数组中。看到了吧,key和value都在mArray中;hashCode放到mHashes
        mHashes[index] = hash;
        mArray[index<<1] = key;
        mArray[(index<<1)+1] = value;
        mSize++;
        return null;
    }

  

  3、remove方法

  remove方法在某种条件下,会重新分配内存,保证分配给ArrayMap的内存在合理区间,减少对内存的占用。但是从这里也可以看出,Android使用的是用时间换空间的方式。无论从任何角度,频繁的分配回收内存一定会耗费时间的。

  remove最终使用的是removeAt方法,此处只说明removeAt

    /**
     * Remove the key/value mapping at the given index.
     * @param index The desired index, must be between 0 and {@link #size()}-1.
     * @return Returns the value that was stored at this index.
     */
    public V removeAt(int index) {
        final Object old = mArray[(index << 1) + 1];
        //如果数据量小于等于1,说明删除该元素后,没有数组为空,清空两个数组。
        if (mSize <= 1) {
            // Now empty.
            if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to 0");
            //put中已有说明
            freeArrays(mHashes, mArray, mSize);
            mHashes = EmptyArray.INT;
            mArray = EmptyArray.OBJECT;
            mSize = 0;
        } else {
            //如果当初申请的数组最大容纳数据个数大于BASE_SIZE的2倍(8),并且现在存储的数据量只用了申请数量的1/3,
            //则需要重新分配空间,已减少对内存的占用
            if (mHashes.length > (BASE_SIZE*2) && mSize < mHashes.length/3) {
                // Shrunk enough to reduce size of arrays.  We don‘t allow it to
                // shrink smaller than (BASE_SIZE*2) to avoid flapping between
                // that and BASE_SIZE.
                //新数组的大小
                final int n = mSize > (BASE_SIZE*2) ? (mSize + (mSize>>1)) : (BASE_SIZE*2);

                if (DEBUG) Log.d(TAG, "remove: shrink from " + mHashes.length + " to " + n);

                final int[] ohashes = mHashes;
                final Object[] oarray = mArray;
                allocArrays(n);

                mSize--;
                //index之前的数据拷贝到新数组中
                if (index > 0) {
                    if (DEBUG) Log.d(TAG, "remove: copy from 0-" + index + " to 0");
                    System.arraycopy(ohashes, 0, mHashes, 0, index);
                    System.arraycopy(oarray, 0, mArray, 0, index << 1);
                }
                //将index之后的数据拷贝到新数组中,和(index>0)的分支结合,就将index位置的数据删除了
                if (index < mSize) {
                    if (DEBUG) Log.d(TAG, "remove: copy from " + (index+1) + "-" + mSize
                            + " to " + index);
                    System.arraycopy(ohashes, index + 1, mHashes, index, mSize - index);
                    System.arraycopy(oarray, (index + 1) << 1, mArray, index << 1,
                            (mSize - index) << 1);
                }
            } else {
                mSize--;
                //将index后的数据向前移位
                if (index < mSize) {
                    if (DEBUG) Log.d(TAG, "remove: move " + (index+1) + "-" + mSize
                            + " to " + index);
                    System.arraycopy(mHashes, index + 1, mHashes, index, mSize - index);
                    System.arraycopy(mArray, (index + 1) << 1, mArray, index << 1,
                            (mSize - index) << 1);
                }
                //移位后最后一个数据清空
                mArray[mSize << 1] = null;
                mArray[(mSize << 1) + 1] = null;
            }
        }
        return (V)old;
    }

  4、freeArrays

    put中有说明,这里就不进行概述了,直接上代码,印证上面的说法。

  private static void freeArrays(final int[] hashes, final Object[] array, final int size) {
        //已经废弃的数组个数为BASE_SIZE的2倍(8),则用mTwiceBaseCache保存废弃的数组;
        //如果个数为BASE_SIZE(4),则用mBaseCache保存废弃的数组
        if (hashes.length == (BASE_SIZE*2)) {
            synchronized (ArrayMap.class) {
                if (mTwiceBaseCacheSize < CACHE_SIZE) {
                    //array为刚刚废弃的数组,mTwiceBaseCache如果有内容,则放入array[0]位置,
                    //在allocArrays中会从array[0]取出,放回mTwiceBaseCache
                    array[0] = mTwiceBaseCache;
                    //array[1]存放hash数组。因为array中每个元素都是Object对象,所以每个元素都可以存放数组
                    array[1] = hashes;
                    //清除index为2和之后的数据
                    for (int i=(size<<1)-1; i>=2; i--) {
                        array[i] = null;
                    }
                    mTwiceBaseCache = array;
                    mTwiceBaseCacheSize++;
                    if (DEBUG) Log.d(TAG, "Storing 2x cache " + array
                            + " now have " + mTwiceBaseCacheSize + " entries");
                }
            }
        } else if (hashes.length == BASE_SIZE) {
            synchronized (ArrayMap.class) {
                if (mBaseCacheSize < CACHE_SIZE) {
                    //代码的注释可以参考上面,不重复说明了
                    array[0] = mBaseCache;
                    array[1] = hashes;
                    for (int i=(size<<1)-1; i>=2; i--) {
                        array[i] = null;
                    }
                    mBaseCache = array;
                    mBaseCacheSize++;
                    if (DEBUG) Log.d(TAG, "Storing 1x cache " + array
                            + " now have " + mBaseCacheSize + " entries");
                }
            }
        }
    }

  5、allocArrays

    算了,感觉没啥好说的,看懂了freeArrays,allocArrays自然就理解了。

    总体来说,通过新数组的个数产生3个分支,个数为BASE_SIZE(4),从mBaseCache取之前废弃的数组;BASE_SIZE的2倍(8),从mTwiceBaseCache取之前废弃的数组;其他,之前废弃的数组没有存储,因为太耗费内存,这种情况下,重新分配内存。

  6、clear和erase

    clear清空数组,如果再向数组中添加元素,需要重新申请空间;erase清除数组中的数组,空间还在。

  7、get

    主要的逻辑都在indexOf中了,剩下的代码不需要分析了,看了的都说懂(窃笑)。

时间: 2024-10-11 20:26:10

ArrayMap代码分析的相关文章

java代码分析及分析工具

java代码分析及分析工具 一个项目从搭建开始,开发的初期往往思路比较清晰,代码也比较清晰.随着时间的推移,业务越来越复杂.代码也就面临着耦合,冗余,甚至杂乱,到最后谁都不敢碰. 作为一个互联网电子商务网站的业务支撑系统,业务复杂不言而喻.从09年开始一直沿用到现在,中间代码经过了多少人的手,留下了多少的坑,已经记不清楚了,谁也说不清了. 代码的维护成本越来越高.代码已经急需做调整和改善.最近项目组专门设立了一个小组,利用业余时间做代码分析的工作,目标对核心代码进行分析并进行设计重构. 代码分析

Java静态代码分析工具Infer

Java静态代码分析工具Infer 作者:chszs,转载需注明.博客主页:http://blog.csdn.net/chszs 一.Infer介绍 Infer是Facebook最新开源的静态程序分析工具,用于在发布移动应用之前对代码进行分析,找出潜在的问题.目前Facebook使用此工具分析Facebook的App,包括Android.iOS.Facebook Messenger和Instagram等. Facebook称该工具帮助其每个月检查出应用潜在的数百个Bug,例如一些空指针访问.资源

$*和[email&#160;protected]之间区别代码分析

#!/bin/bash set 'apple pie' pears peaches for i in $*           /*单引号被去掉,循环单个字符输出*/ do echo $i done [[email protected] Ex_14.02-14.31]# sh 14-14-1 apple pie pears peaches -------------------------------------------------------------- #!/bin/bash set

《linux 内核完全剖析》 keyboard.S 部分代码分析(key_map)

keyboard.S 部分代码分析(key_map) keyboard中间有这么一段,我一开始没看明白,究竟啥意思 key_map: .byte 0,27 .ascii "1234567890-=" .byte 127,9 .ascii "qwertyuiop[]" .byte 13,0 .ascii "asdfghjkl;'" .byte '`,0 .ascii "\\zxcvbnm,./" .byte 0,'*,0,32

20145234黄斐《网络对抗技术》实验四,恶意代码分析

恶意代码 概述 恶意代码是指故意编制或设置的.对网络或系统会产生威胁或潜在威胁的计算机代码.最常见的恶意代码有计算机病毒(简称病毒).特洛伊木马(简称木马).计算机蠕虫(简称蠕虫).后门.逻辑炸弹等. 特征: 恶意的目的,获取靶机权限.用户隐私等 本身是计算机程序,可以执行,并作用于靶机 通过执行发生作用,一般来说不运行是没问题的 恶意代码分析 在大多数情况下,进行恶意代码分析时,我们将只有恶意代码的可执行文件本身,而这些文件并不是我们人类可读的.为了了解这些文件的意义,你需要使用各种工具和技巧

20145326蔡馨熠《网络对抗》——恶意代码分析

20145326蔡馨熠<网络对抗>--恶意代码分析 1.实验后回答问题 (1)如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所以想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些,用什么方法来监控.. 需要监控什么? 系统中各种程序.文件的行为. 还需要注意是否会出现权限更改的行为. 注册表. 是否有可疑进程. 如果有网络连接的情况,需要注意这个过程中的IP地址与端口. 用什么来监控? 最先想到的肯定是使用wireshark抓包了,再进行进一步分析. Sysinternals

代码分析—“CA0052 没有选择要分析的目标”(VS2012)

情况: 1.未采用代码分析时程序正常编译 2.采用代码分析,会提示"没有选择分析目标"或"未加载制定版本的程序集"...的错误 分析: 是由于代码分析依赖程序集的强签名,包括版本 解决方案: 1.修改代码分析工具的配置项: FxCopCmd.exe.config里节点AssemblyReferenceResolveMode的Value值StrongName修改为StrongNameIgnoringVersion或None 2.修改当前分析的项目: .csproj增加

常用 Java 静态代码分析工具的分析与比较

转载自: http://www.oschina.net/question/129540_23043 简介: 本文首先介绍了静态代码分析的基本概念及主要技术,随后分别介绍了现有 4 种主流 Java 静态代码分析工具 (Checkstyle,FindBugs,PMD,Jtest),最后从功能.特性等方面对它们进行分析和比较,希望能够帮助 Java 软件开发人员了解静态代码分析工具,并选择合适的工具应用到软件开发中. 引言 在 Java 软件开发过程中,开发团队往往要花费大量的时间和精力发现并修改代

驱动相关的内核代码分析

arch\arm\include\asm\Io.h #define __raw_readl(a) (__chk_io_ptr(a), *(volatile unsigned int __force   *)(a)) #define __raw_writel(v,a) (__chk_io_ptr(a), *(volatile unsigned int __force   *)(a) = (v)) 注:(volatile unsigned int __force   *)指针强制转换为unsigne