caffe 中base_lr、weight_decay、lr_mult、decay_mult代表什么意思?

机器学习或者模式识别中,会出现overfitting,而当网络逐渐overfitting时网络权值逐渐变大,因此,为了避免出现overfitting,会给误差函数添加一个惩罚项,常用的惩罚项是所有权重的平方乘以一个衰减常量之和。其用来惩罚大的权值。

The learning rate is a parameter that determines how much an updating step influences the current value of the weights. While weight decay is an additional term in the weight update rule that causes the weights to exponentially decay to zero, if no other update is scheduled.

So let‘s say that we have a cost or error function E(w) that we want to minimize. Gradient descent tells us to modify the weights w in the direction of steepest descent in E:

wi←wi−η∂E∂wi,

where η is the learning rate, and if it‘s large you will have a correspondingly large modification of the weights wi(in general it shouldn‘t be too large, otherwise you‘ll overshoot the local minimum in your cost function).

In order to effectively limit the number of free parameters in your model so as to avoid over-fitting, it is possible to regularize the cost function. An easy way to do that is by introducing a zero mean Gaussian prior over the weights, which is equivalent to changing the cost function to E˜(w)=E(w)+λ2w2. In practice this penalizes large weights and effectively limits the freedom in your model. The regularization parameter λ determines how you trade off the original cost E with the large weights penalization.

Applying gradient descent to this new cost function we obtain:

wi←wi−η∂E∂wi−ηλwi.

The new term −ηλwi coming from the regularization causes the weight to decay in proportion to its size.

In your solver you likely have a learning rate set as well as weight decay.  lr_mult indicates what to multiply the learning rate by for a particular layer.  This is useful if you want to update some layers with a smaller learning rate (e.g. when finetuning some layers while training others from scratch) or if you do not want to update the weights for one layer (perhaps you keep all the conv layers the same and just retrain fully connected layers).  decay_mult is the same, just for weight decay.

参考资料:http://stats.stackexchange.com/questions/29130/difference-between-neural-net-weight-decay-and-learning-rate

     http://blog.csdn.net/u010025211/article/details/50055815

     https://groups.google.com/forum/#!topic/caffe-users/8J_J8tc1ZHc

时间: 2024-10-11 10:16:46

caffe 中base_lr、weight_decay、lr_mult、decay_mult代表什么意思?的相关文章

Caffe中对MNIST执行train操作执行流程解析

之前在 http://blog.csdn.net/fengbingchun/article/details/49849225 中简单介绍过使用Caffe train MNIST的文章,当时只是仿照caffe中的example实现了下,下面说一下执行流程,并精简代码到仅有10余行: 1.        先注册所有层,执行layer_factory.hpp中类LayerRegisterer的构造函数,类LayerRegistry的AddCreator和Registry静态函数:关于Caffe中Lay

caffe中权值初始化方法

首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代码的具体的话,可以看:http://blog.csdn.net/xizero00/article/details/50921692,写的还是很不错的(不过有的地方的备注不对,不知道改过来了没). 文件 filler.hpp提供了7种权值初始化的方法,分别为:常量初始化(constant).高斯分布初

Caffe中Solver方法(HGL)

Solver就是用来使loss最小化的优化方法,loss是损失函数.损失函数最小的目标就是求解全局最小值. 假设有数据集(X1, X2, -, Xn),对应的(y1, y2, -, yn),其中每个Xi对应m个元素.loss函数定义为 其中,F(X)为模型.假设F(X)为线性函数: , x0 = 1 目标:min Φ(θ),loss函数最小.估计最优系数(θ0, θ1, θ2, -, θm). 预备知识:梯度下降法(最速下降法) 顾名思义,梯度下降法的计算过程就是沿梯度下降的方向求解极小值. 具

如何在caffe中添加新的Layer

如何在caffe中添加新的Layer 本文分为两部分,先写一个入门的教程,然后再给出自己添加maxout与NIN的layer的方法 (一) 其实在Github上已经有答案了(https://github.com/BVLC/caffe/issues/684) Here's roughly the process I follow. Add a class declaration for your layer to the appropriate one of common_layers.hpp, 

Caffe中的损失函数解析

Caffe中的损失函数解析 导言 在有监督的机器学习中,需要有标签数据,与此同时,也需要有对应的损失函数(Loss Function). 在Caffe中,目前已经实现了一些损失函数,包括最常见的L2损失函数,对比损失函数,信息增益损失函数等等.在这里做一个笔记,归纳总结Caffe中用到的不同的损失函数,以及分析它们各自适合的使用场景. 欧式距离损失函数(Euclidean Loss) 输入: 预测的值: y ^ ∈[?∞,+∞] , 其中,它们的形状为:N×C×H×W 标签的值: y∈[?∞,+

Caffe中的优化方法

在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.Caffe通过协调的进行整个网络的前向传播推倒以及后向梯度对参数进行更新,试图减小损失. Caffe已经封装好了三种优化方法,分别是Stochastic Gradient Descent (SGD), AdaptiveGradient (ADAGRAD), and Nesterov's Accelerated Gradient (NAG). Solver的流程: 1.     设计好需

CAFFE中训练与使用阶段网络设计的不同

神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,ACCURACY层了. 下图是能过$CAFFE_ROOT/python/draw_net.py绘制$CAFFE_ROOT/models/caf

caffe中batch norm源码阅读

1. batch norm 输入batch norm层的数据为[N, C, H, W], 该层计算得到均值为C个,方差为C个,输出数据为[N, C, H, W]. <1> 形象点说,均值的计算过程为: (1) 即对batch中相同索引的通道数取平均值,所以最终计算得到的均值为C个,方差的计算过程与此相同. <2> batch norm层的作用: a. 均值:(2) b. 方差:(3) c. 归一化:(4) 2. caffe中batch_norm_layer.cpp中的LayerSe

caffe 中 python 数据层

caffe中大多数层用C++写成. 但是对于自己数据的输入要写对应的输入层,比如你要去图像中的一部分,不能用LMDB,或者你的label 需要特殊的标记. 这时候就需要用python 写一个输入层. 如在fcn 的voc_layers.py 中 有两个类: VOCSegDataLayer SBDDSegDataLayer 分别包含:setup,reshape,forward, backward, load_image, load_label. 不需要backward 没有参数更新. import