Python 多进程多线编程模板

一、Python 多进程多线程原理介绍

  1. Python 全局解释器锁GIL

    a) Python的全局解释器锁GIL是互斥锁,能够防止本机多个线程一次执行Python字节码;由于CPython的内存管理在线程级别是不安全的(内存泄露),所以这个全局解释器锁是必须的。每个Python进程只能申请使用一个GIL锁,因此Python的多线程虽然是并发的但不能并行处理。Python的解释器每次只能执行一个线程,待GIL锁释放后再执行下一个线程,这样线程轮流被执行。

   b) Python2.x里,GIL的释放逻辑是当前线程遇见IO操作或者ticks计数达到100;python3.x中,GIL不使用ticks计数,改为使用计时器即执行时间达到设定阈值后,释放当前线程的GIL。

  2. Python 多进程多线程适用场景

    a) CPU-bound (计算密集型)

      CPU-bound 指的是系统的硬盘/内存效能相对CPU的效能要好很多,系统运行时的状态是CPU占用接近100%;I/O读写硬盘和内存占用很低。在这种计算密集型的状况下Python的ticks计数器很快达到阈值会触发GIL的释放与再锁定。这时Python多线程会频繁的加锁和释放锁,消耗大量的CPU资源。因此对于计算密集型的程序Python使用多进程要比多线程好很多。

    b) I/O-bound (I/O密集型)

      I/O-bound 指的是系统的CPU效能相对硬盘/内存的效能要好很多,系统运行时大部分时间是在等待I/O读写,CPU的占用并不高。Python单线程下有I/O操作会进行I/O等待,造成不必要的CPU时间浪费,开启多线程能在线程A执行I/O等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率。因此对于I/O密集型的程序Python多线程有一定的优势。

二、 Python 多进程多线程编程模板

  1. 此模板具有两个重要优点:

   a) 根据程序执行类型自定义多进程多线程的开启个数,调节程序的执行效率。

   b) 程序中还实时打印程序执行进度并不较大的影响程序的执行效率。

  1 #!/usr/bin/env python
  2 # -*- coding: UTF-8 -*-
  3 __author__="阿辉枫情"
  4 __date__ = "$2017-5-12 21:49:51$"
  5 import os
  6 import sys
  7 import time
  8 import random
  9 import threading
 10 from multiprocessing import Process, Manager, Lock
 11
 12 # 解决编码问题
 13 reload(sys)
 14 sys.setdefaultencoding(‘utf-8‘)
 15 Type = sys.getfilesystemencoding()
 16
 17 #------------------------------------------------
 18 #   可修改的全局变量参数--Start.
 19 tasklist = [] # 定义任务列表
 20
 21 PROCESS_COUNT = 2 # 定义进程数量
 22 THREAD_COUNT = 4 # 定义线程数量
 23 #   可修改全局变量参数--End.
 24 #------------------------------------------------
 25
 26
 27 class HandleTask(threading.Thread):
 28     """docstring for HandleTask"""
 29
 30     def __init__(self, proid, prolock, thrid, thrlock, tasklist, tasknum, schedule):
 31         super(HandleTask, self).__init__()
 32         self.proid = proid
 33         self.prolock = prolock
 34         self.thrid = thrid
 35         self.thrlock = thrlock
 36         self.tasklist = tasklist
 37         self.tasknum = tasknum
 38         self.sch = schedule
 39         self.pid = os.getpid()
 40
 41     def run(self):
 42         self.prolock.acquire()
 43         self.thrlock.acquire()
 44         print "The Thread [%s:%s] tasklist number:[%s]" % (self.proid, self.thrid, len(self.tasklist))
 45         self.thrlock.release()
 46         self.prolock.release()
 47
 48         for (element, ) in self.tasklist:
 49             # 任务执行开始
 50             # print element
 51             time.sleep(1)
 52             # 任务执行结束
 53
 54             self.prolock.acquire()
 55             self.thrlock.acquire()
 56             self.sch.value += 1
 57             self.thrlock.release()
 58             self.prolock.release()
 59
 60 def Thread_Handle(proid, prolock, tasklist, tasknum, schedule):
 61     global THREAD_COUNT
 62     lock = threading.Lock()
 63     WorksThread = []
 64     thread_task_number = len(tasklist) / THREAD_COUNT
 65     if thread_task_number == 0:
 66         THREAD_COUNT = len(tasklist)
 67         thread_task_number = 1
 68
 69     for i in range(THREAD_COUNT):
 70         if i != THREAD_COUNT - 1:
 71             source_list = tasklist[i * thread_task_number: (i + 1) * thread_task_number]
 72         else:
 73             source_list = tasklist[i * thread_task_number:]
 74         Work = HandleTask(proid, prolock, i, lock, source_list, tasknum, schedule)
 75         Work.start()
 76         WorksThread.append(Work)
 77
 78     for Work in WorksThread:
 79         Work.join()
 80
 81 def Process_Handle(tasklist, tasknum):
 82     global PROCESS_COUNT
 83     lock = Lock()
 84     # 定义进度变量 schedule
 85     schedule = Manager().Value(‘schedule‘, 0)
 86     WorksProcess = []
 87     # 按照任务大小进行进程任务分配
 88     process_task_num = len(tasklist) / PROCESS_COUNT
 89     if process_task_num == 0:
 90         PROCESS_COUNT = len(tasklist)
 91         process_task_num = 1
 92
 93     for i in range(PROCESS_COUNT):
 94         if i != PROCESS_COUNT - 1:
 95             source_list = tasklist[i * process_task_num: (i + 1) * process_task_num]
 96         else:
 97             source_list = tasklist[i * process_task_num:]
 98         Work = Process(target=Thread_Handle, args=(i, lock, source_list, tasknum, schedule))
 99         Work.start()
100         WorksProcess.append(Work)
101     # 添加额外进程打印任务执行进度
102     Work = Process(target=Displays, args=(lock, tasknum, schedule))
103     Work.start()
104     WorksProcess.append(Work)
105     for Work in WorksProcess:
106         Work.join()
107     del WorksProcess
108
109 def Displays(prolock, tasknum, schedule, delaytime=None):
110     if delaytime is None:
111         delaytime = 1
112     while (tasknum - schedule.value):
113         time.sleep(delaytime)
114         print "Completed:[%s] , Remaining:[%s]" % (schedule.value, tasknum - schedule.value)
115
116 def main():
117     # 打印输出主进程号
118     print "The Main Process ID:[%s]"% os.getpid()
119     # 建立测试任务
120     for i in range(1, 101):
121         tasklist.append((i, ))
122     Process_Handle(tasklist, len(tasklist))
123
124
125 if __name__ == ‘__main__‘:
126
127     print "The Program start time:", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
128     start = time.time()
129     main()
130     print "The Program end time:", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), "[%s]" % (time.time() - start)
131     raw_input("Please enter any key to end!!!".decode(‘utf-8‘).encode(Type))

  2. 程序执行测试结果

 1 The Program start time: 2017-05-12 18:15:12
 2 The Main Process ID:[9752]
 3 The Thread [0:0] tasklist number:[12]
 4 The Thread [1:0] tasklist number:[12]
 5 The Thread [1:1] tasklist number:[12]
 6 The Thread [0:1] tasklist number:[12]
 7 The Thread [1:2] tasklist number:[12]
 8 The Thread [0:2] tasklist number:[12]
 9 The Thread [0:3] tasklist number:[14]
10 The Thread [1:3] tasklist number:[14]
11 Completed:[0] , Remaining:[100]
12 Completed:[8] , Remaining:[92]
13 Completed:[16] , Remaining:[84]
14 Completed:[25] , Remaining:[75]
15 Completed:[34] , Remaining:[66]
16 Completed:[42] , Remaining:[57]
17 Completed:[51] , Remaining:[49]
18 Completed:[59] , Remaining:[41]
19 Completed:[67] , Remaining:[32]
20 Completed:[76] , Remaining:[24]
21 Completed:[85] , Remaining:[15]
22 Completed:[93] , Remaining:[7]
23 Completed:[98] , Remaining:[2]
24 Completed:[100] , Remaining:[0]
25 The Program end time: 2017-05-12 18:15:27 [15.007999897]
26 Please enter any key to end!!!

时间: 2024-10-05 04:09:29

Python 多进程多线编程模板的相关文章

(转)python多进程、多线程编程

1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务.一个线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令. 1.1.2 线程的工作方式 假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时恢复到当时读的具体进度.有一个方法就是记下页数.行数与字数这三个数值,这

python 使用多进程实现并发编程/使用queue进行进程间数据交换

import time import os import multiprocessing from multiprocessing import Queue, pool """ 一.Python 使用多进程实现并发编程: 因为cpython解释器中有GIL存在的原因(每个进程都会维护一个GIL,jpython解释器没有这个问题),所以在一个进程内, 即使服务器是多核cpu,同一时刻只能有一个线程在执行任务(一个进程内).如果存在较多IO,使用多线程是可以提高处理速度的, 但是

Python多进程编程相关技术

由于Python的线程有些限制,例如多线程不能充分利用多核CPU等问题,因此在Python中我们更倾向使用多进程.但在做不阻塞的异步UI等场景,我们也会使用多线程.本篇文章主要探讨Python多进程的问题. Python在2.6引入了多进程的机制,并提供了丰富的组件及api以方便编写并发应用.multiprocessing包的组件Process, Queue, Pipe, Lock等组件提供了与多线程类似的功能.使用这些组件,可以方便地编写多进程并发程序. Process Process的使用有

Python四大主流网络编程框架

目前Python的网络编程框架已经多达几十个,逐个学习它们显然不现实.但这些框架在系统架构和运行环境中有很多共通之处,本文带领读者学习基于Python网络框架开发的常用知识,及目前的4种主流Python网络框架:Django.Tornado.Flask.Twisted. 网络框架及MVC架构 所谓网络框架是指这样的一组Python包,它能够使开发者专注于网站应用业务逻辑的开发,而无须处理网络应用底层的协议.线程.进程等方面.这样能大大提高开发者的工作效率,同时提高网络应用程序的质量. 在目前Py

Python 四大主流 Web 编程框架

Python 四大主流 Web 编程框架 目前Python的网络编程框架已经多达几十个,逐个学习它们显然不现实.但这些框架在系统架构和运行环境中有很多共通之处,本文带领读者学习基于Python网络框架开发的常用知识,及目前的4种主流Python网络框架:Django.Tornado.Flask.Twisted. 网络框架及MVC架构 所谓网络框架是指这样的一组Python包,它能够使开发者专注于网站应用业务逻辑的开发,而无须处理网络应用底层的协议.线程.进程等方面.这样能大大提高开发者的工作效率

Python 多进程实战 & 回调函数理解与实战

这篇博文主要讲下笔者在工作中Python多进程的实战运用和回调函数的理解和运用. 多进程实战 实战一.批量文件下载 从一个文件中按行读取 url ,根据 url 下载文件到指定位置,用多进程实现. #!/usr/local/python27/bin/python2.7 from multiprocessing import Process,Pool import os,time,random,sys import urllib # 文件下载函数 def filedown(url,file):  

Python多进程使用

[Python之旅]第六篇(六):Python多进程使用 香飘叶子 2016-05-10 10:57:50 浏览190 评论0 python 多进程 多进程通信 摘要:   关于进程与线程的对比,下面的解释非常好的说明了这两者的区别:     这里主要说明关于Python多进程的下面几点: 1 2 3 4 5 6 7 1.多进程的使用方法 2.进程间的通信之multiprocessing.Manager()使用 3.Python进程池 ... 关于进程与线程的对比,下面的解释非常好的说明了这两者

Python多进程(1)——subprocess与Popen()

Python多进程方面涉及的模块主要包括: subprocess:可以在当前程序中执行其他程序或命令: mmap:提供一种基于内存的进程间通信机制: multiprocessing:提供支持多处理器技术的多进程编程接口,并且接口的设计最大程度地保持了和threading模块的一致,便于理解和使用. 本文主要介绍 subprocess 模块及其提供的 Popen 类,以及如何使用该构造器在一个进程中创建新的子进程.此外,还会简要介绍 subprocess 模块提供的其他方法与属性,这些功能上虽然没

python高级之网络编程

python高级之网络编程 本节内容 网络通信概念 socket编程 socket模块一些方法 聊天socket实现 远程执行命令及上传文件 socketserver及其源码分析 1.网络通信概念 说到网络通信,那就不得不说TCP/IP协议簇的OSI七层模型了,这个东西当初在学校都学烂了...(PS:毕竟本人是网络工程专业出身...) 简单介绍下七层模型从底层到上层的顺序:物理层(定义物理设备的各项标准),数据链路层(mac地址等其他东西的封装),网络层(IP包头的的封装),传输层(TCP/UD