CSU-1120 病毒(最长递增公共子序列)

你有一个日志文件,里面记录着各种系统事件的详细信息。自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生)。

遗憾的是,你的系统被病毒感染了,日志文件中混入了病毒生成的随机伪事件(但真实事件的相对顺序保持不变)。备份的日志文件也被感染了,但由于病毒采用的随机感染方法,主日志文件和备份日志文件在感染后可能会变得不一样。

给出被感染的主日志和备份日志,求真实事件序列的最长可能长度。

Input

输入第一行为数据组数T (T<=100)。每组数据包含两行,分别描述感染后的主日志和备份日志。

每个日志文件的格式相同,均为一个整数n (1<=n<=1000)(代表感染后的事件总数)和n 个不超过100,000的正整数(表示感染后各事件的时间戳)。

注意,感染后可能会出现时间戳完全相同的事件。

Output

对于每组数据,输出真实事件序列的最长可能长度。

Sample Input

1
9 1 4 2 6 3 8 5 9 1
6 2 7 6 3 5 1

Sample Output

3
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>

using namespace std;
const int N = 1000 + 5;
int dp[N], a[N], b[N];

void Work(int n, int m){
    int M;
    memset(dp, 0, sizeof(dp));
    for(int i = 1; i <= n; i++){
        M = 0;
        for(int j = 1; j <= m; j++){
            if(a[i] > b[j] && M < dp[j])
                M = dp[j];
            if(a[i] == b[j])
                dp[j] = M + 1;
        }
    }
    printf("%d\n", *max_element(dp + 1, dp + m + 1));
}
int main(){
    int T, n, m;
    scanf("%d", &T);
    while(T --){
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
        scanf("%d", &m);
        for(int i = 1; i <= m; i++) scanf("%d", &b[i]);
        Work(n, m);
    }
}
时间: 2024-12-28 13:17:10

CSU-1120 病毒(最长递增公共子序列)的相关文章

最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)

最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj.例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列. 考虑最长公共子序列问题如何分解成

最长递增公共子序列

#include <stdio.h> #include <algorithm> #include <string.h> using namespace std; int n,m,a[505],b[505],dp[505][505]; int LICS() { int MAX,i,j; memset(dp,0,sizeof(dp)); for(i = 1; i<=n; i++) { MAX = 0; for(j = 1; j<=m; j++) { dp[i][

hdu 1423 最长递增公共子序列

#include<stdio.h> #include<string.h> #include<iostream> using namespace std; int max(int a,int b) { return a>b?a:b; } int main() { int T,i,j,n,m,num1[510],num2[510]; int dp[510][510]; scanf("%d",&T); while(T--) { scanf(&

hdoj1423 最长上升公共子序列

hdoj1423 题目分析: 两个数组a[n1] , b[n2], 求最长上升公共子序列. 我们可用一维存储 f[i] 表示 b 数组以 j 结尾, 与 a[] 数组构成的最长公共上升子序列. 对数组 d 的任意 j 位, 都枚举 a[1 ~n1]. 当a[i] == b[j] 时 , 在1 ~ j - 1中 找出 b[k] 小于 a[ i ] 并且 d[k] 的值最大. 当 a[ i ] > b [j ] 时, 在0到j-1中,对于小于a[i]的,保存f值的最优解 (保存小于a [ i ] 并

CSU 1120 病毒(经典模板例题:最长公共递增子序列)

1120: 病毒 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 390  Solved: 153[Submit][Status][Web Board] Description 你有一个日志文件,里面记录着各种系统事件的详细信息.自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生). 遗憾的是,你的系统被病毒感染了,日志文件中混入了病毒生成的随机伪事件(但真实事件的相对顺序保持不变).备份的日志文件也被感染了,但由于病毒采用

UVA 12511/CSU 1120 virus 最长公共上升子序列

第一次接触一个这最长公共上升子序列 不过其实搞清楚了跟最长公共子序列和 最长上升子序列如出一辙 两重循环,对于当前不相等的,等于前一个的值,相等的,等于比当前A[i]小的最大值+1.弄个临时变量记录最大值即可 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int dp[2][1010]; int A[1010

贼有意思[最长上升公共子序列](SAC大佬测试题)

题目描述Awson 最近越来越蠢了,一天就只知道 zyys.他定义了一个 zyys 数列:这个数列满足:1.是另外两个数列 A,B 的公共子序列;2.数列单调递增.现在他有一个问题,我们假设知道两个长度均为 N 的序列 A,B,如何去找最长的 zyys数列呢?由于他只会 zyys 了,他把这个问题交给了你.输入格式第一行包含一个整数 N,表示序列 A,B 的长度;接下来 2 行,每行 N 个数,表示序列 A,B.输出格式一行,输出最长的 zyys 数列.输入样例52 3 3 3 42 3 3 4

poj_1458 LCS problem F.最长上升公共子序列

Description A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly

HDU 1423 最长上升公共子序列(LCIS)

题目大意: 给定两个数字数组a[] , b[],在这两个数组中找一个最长的公共上升子序列,输出最长的长度 #include <cstdio> #include <cstring> using namespace std; const int N = 1005; #define max(a,b) a>b?a:b int dp[N] , a[N] , b[N]; /*可以看作是每次在第一个数据中提取一个数字,然后在第二个数组中 根据相同的数字来查找最长上升子序列,f[i][j],