伯努利数,刚!
自然数幂和神犇的blog: http://blog.csdn.net/acdreamers/article/details/38929067
伯努利数的2个重要的式子:
为什么图片这么大。。。
这样的话n^2预处理出伯努利数,然后就可做了
1 #include <bits/stdc++.h> 2 #define LL long long 3 using namespace std; 4 5 const int M=2005; 6 const int maxn=2050; 7 const int mod=1000000007; 8 9 10 int fac[maxn],inv[maxn],facinv[maxn]; 11 void pre_C() 12 { 13 fac[0]=inv[1]=inv[0]=facinv[1]=facinv[0]=1; 14 for (int i=1; i<=M; i++) fac[i]=(LL)fac[i-1]*i%mod; 15 for (int i=2; i<=M; i++) inv[i]=(LL)(mod-mod/i)*inv[mod%i]%mod; 16 for (int i=2; i<=M; i++) facinv[i]=(LL)inv[i]*facinv[i-1]%mod; 17 } 18 LL C(int n, int m) 19 { 20 return (LL) fac[n]*facinv[m]%mod*facinv[n-m]%mod; 21 } 22 23 int B[maxn]; 24 void pre_B() 25 { 26 B[0]=1; 27 for (int i=1; i<=M; i++) 28 { 29 int ans=0; 30 for (int j=0; j<i; j++) ans=(ans+(LL)C(i+1,j)*B[j]%mod)%mod; 31 ans=(LL)ans*(-inv[i+1])%mod; 32 ans=(ans+mod)%mod; 33 B[i]=ans; 34 } 35 } 36 37 int tmp[maxn]; 38 int work(int k) 39 { 40 LL ans=inv[k+1],sum=0; 41 for (int i=1; i<=k+1; i++) 42 sum=(sum+C(k+1,i)*tmp[i]%mod*B[k+1-i]%mod)%mod; 43 ans=ans*sum%mod; 44 return ans%mod; 45 } 46 47 LL n; 48 int k; 49 int main() 50 { 51 pre_C(); pre_B(); 52 int T; scanf("%d",&T); 53 while (T--) 54 { 55 scanf("%I64d %d",&n,&k); 56 n%=mod; tmp[0]=1; 57 for (int i=1; i<=M; i++) tmp[i]=(LL)tmp[i-1]*(n+1)%mod; 58 printf("%d\n",work(k)); 59 } 60 return 0; 61 }
时间: 2024-12-19 14:42:56