[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用

本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统。

1.SVD详解

SVD(singular value decomposition),翻译成中文就是奇异值分解。SVD的用处有很多,比如:LSA(隐性语义分析)、推荐系统、特征压缩(或称数据降维)。SVD可以理解为:将一个比较复杂的矩阵用更小更简单的3个子矩阵的相乘来表示,这3个小矩阵描述了大矩阵重要的特性。

1.1奇异值分解的几何意义(因公式输入比较麻烦所以采取截图的方式)

2.SVD应用于推荐系统

数据集中行代表用户user,列代表物品item,其中的值代表用户对物品的打分。基于SVD的优势在于:用户的评分数据是稀疏矩阵,可以用SVD将原始数据映射到低维空间,低维空间中

整体思路:先找到用户没有评分的物品,通过计算未评分物品与其他物品的相似性,得到一个预测打分,再对这些物品的评分从高到低进行排序,返回前N个物品推荐给用户。

具体代码如下,主要分为5部分:

第1部分:加载测试数据集;

第2部分:定义三种计算相似度的方法;

第3部分:通过计算奇异值平方和的百分比来确定将数据降到多少维才合适,返回需要降到的维度;

第4部分:在已经降维的数据中,基于SVD对用户未打分的物品进行评分预测,返回未打分物品的预测评分值;

第5部分:产生前N个评分值高的物品,返回物品编号以及预测评分值。

优势在于:用户的评分数据是稀疏矩阵,可以用SVD将数据映射到低维空间,然后计算低维空间中的item之间的相似度,对用户未评分的item进行评分预测,最后将预测评分高的item推荐给用户。

#coding=utf-8
from numpy import *
from numpy import linalg as la

‘‘‘加载测试数据集‘‘‘
def loadExData():
    return mat([[0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 5],
           [0, 0, 0, 3, 0, 4, 0, 0, 0, 0, 3],
           [0, 0, 0, 0, 4, 0, 0, 1, 0, 4, 0],
           [3, 3, 4, 0, 0, 0, 0, 2, 2, 0, 0],
           [5, 4, 5, 0, 0, 0, 0, 5, 5, 0, 0],
           [0, 0, 0, 0, 5, 0, 1, 0, 0, 5, 0],
           [4, 3, 4, 0, 0, 0, 0, 5, 5, 0, 1],
           [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 4],
           [0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 2],
           [0, 0, 0, 0, 5, 0, 0, 0, 0, 4, 0],
           [1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0]])

‘‘‘以下是三种计算相似度的算法,分别是欧式距离、皮尔逊相关系数和余弦相似度,
注意三种计算方式的参数inA和inB都是列向量‘‘‘
def ecludSim(inA,inB):
    return 1.0/(1.0+la.norm(inA-inB))  #范数的计算方法linalg.norm(),这里的1/(1+距离)表示将相似度的范围放在0与1之间

def pearsSim(inA,inB):
    if len(inA)<3: return 1.0
    return 0.5+0.5*corrcoef(inA,inB,rowvar=0)[0][1]  #皮尔逊相关系数的计算方法corrcoef(),参数rowvar=0表示对列求相似度,这里的0.5+0.5*corrcoef()是为了将范围归一化放到0和1之间

def cosSim(inA,inB):
    num=float(inA.T*inB)
    denom=la.norm(inA)*la.norm(inB)
    return 0.5+0.5*(num/denom) #将相似度归一到0与1之间

‘‘‘按照前k个奇异值的平方和占总奇异值的平方和的百分比percentage来确定k的值,
后续计算SVD时需要将原始矩阵转换到k维空间‘‘‘
def sigmaPct(sigma,percentage):
    sigma2=sigma**2 #对sigma求平方
    sumsgm2=sum(sigma2) #求所有奇异值sigma的平方和
    sumsgm3=0 #sumsgm3是前k个奇异值的平方和
    k=0
    for i in sigma:
        sumsgm3+=i**2
        k+=1
        if sumsgm3>=sumsgm2*percentage:
            return k

‘‘‘函数svdEst()的参数包含:数据矩阵、用户编号、物品编号和奇异值占比的阈值,
数据矩阵的行对应用户,列对应物品,函数的作用是基于item的相似性对用户未评过分的物品进行预测评分‘‘‘
def svdEst(dataMat,user,simMeas,item,percentage):
    n=shape(dataMat)[1]
    simTotal=0.0;ratSimTotal=0.0
    u,sigma,vt=la.svd(dataMat)
    k=sigmaPct(sigma,percentage) #确定了k的值
    sigmaK=mat(eye(k)*sigma[:k])  #构建对角矩阵
    xformedItems=dataMat.T*u[:,:k]*sigmaK.I  #根据k的值将原始数据转换到k维空间(低维),xformedItems表示物品(item)在k维空间转换后的值
    for j in range(n):
        userRating=dataMat[user,j]
        if userRating==0 or j==item:continue
        similarity=simMeas(xformedItems[item,:].T,xformedItems[j,:].T) #计算物品item与物品j之间的相似度
        simTotal+=similarity #对所有相似度求和
        ratSimTotal+=similarity*userRating #用"物品item和物品j的相似度"乘以"用户对物品j的评分",并求和
    if simTotal==0:return 0
    else:return ratSimTotal/simTotal #得到对物品item的预测评分

‘‘‘函数recommend()产生预测评分最高的N个推荐结果,默认返回5个;
参数包括:数据矩阵、用户编号、相似度衡量的方法、预测评分的方法、以及奇异值占比的阈值;
数据矩阵的行对应用户,列对应物品,函数的作用是基于item的相似性对用户未评过分的物品进行预测评分;
相似度衡量的方法默认用余弦相似度‘‘‘
def recommend(dataMat,user,N=5,simMeas=cosSim,estMethod=svdEst,percentage=0.9):
    unratedItems=nonzero(dataMat[user,:].A==0)[1]  #建立一个用户未评分item的列表
    if len(unratedItems)==0:return ‘you rated everything‘ #如果都已经评过分,则退出
    itemScores=[]
    for item in unratedItems:  #对于每个未评分的item,都计算其预测评分
        estimatedScore=estMethod(dataMat,user,simMeas,item,percentage)
        itemScores.append((item,estimatedScore))
    itemScores=sorted(itemScores,key=lambda x:x[1],reverse=True)#按照item的得分进行从大到小排序
    return itemScores[:N]  #返回前N大评分值的item名,及其预测评分值
将文件命名为svd2.py,在python提示符下输入:
>>>import svd2
>>>testdata=svd2.loadExData()
>>>svd2.recommend(testdata,1,N=3,percentage=0.8)#对编号为1的用户推荐评分较高的3件商品

Reference:

1.Peter Harrington,《机器学习实战》,人民邮电出版社,2013

2.http://www.ams.org/samplings/feature-column/fcarc-svd (讲解SVD非常好的一篇文章,对于理解SVD非常有帮助,本文中SVD的几何意义就是参考这篇)

3. http://blog.csdn.net/xiahouzuoxin/article/details/41118351 (讲解SVD与特征值分解区别的一篇文章)

时间: 2024-10-05 04:58:35

[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用的相关文章

奇异值分解(SVD)原理与在降维中的应用

奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域.是很多机器学习算法的基石.本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运用SVD的. 1. 回顾特征值和特征向量 我们首先回顾下特征值和特征向量的定义如下:$$Ax=\lambda x$$ 其中A是一个$n \times n$的矩阵,$x$是一个$n$维向量,则我们说$\lam

机器学习——降维(主成分分析PCA、线性判别分析LDA、奇异值分解SVD、局部线性嵌入LLE)

机器学习--降维(主成分分析PCA.线性判别分析LDA.奇异值分解SVD.局部线性嵌入LLE) 以下资料并非本人原创,因为觉得石头写的好,所以才转发备忘 (主成分分析(PCA)原理总结)[https://mp.weixin.qq.com/s/XuXK4inb9Yi-4ELCe_i0EA] 来源:?石头?机器学习算法那些事?3月1日 主成分分析(Principal components analysis,以下简称PCA)是最常用的降维方法之一,在数据压缩和消除冗余方面具有广泛的应用,本文由浅入深的

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计

【简化数据】奇异值分解(SVD)

[简化数据]奇异值分解(SVD) @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/42214205 1.简介 奇异值分解(singular Value Decomposition),简称SVD,线性代数中矩阵分解的方法.假如有一个矩阵A,对它进行奇异值分解,可以得到三个矩阵: 这三个矩阵的大小: 矩阵sigma(即上图U和V中间的矩阵)除了对角元素不为0,其他元素都为0,并且对角元素是从大到小排列的,前面的元

【Machine Learn】机器学习及其基础概念简介

机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚

奇异值分解(SVD) --- 几何意义 (转载)

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把 这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 关于线性变换部分的一些知识可以猛戳这里  奇异值分解(S

机器学习实战之SVD

1. 奇异值分解 SVD(singular value decomposition) 1.1 SVD评价 优点: 简化数据, 去除噪声和冗余信息, 提高算法的结果 缺点: 数据的转换可能难以理解 1.2 SVD应用 (1) 隐性语义索引(latent semantic indexing, LSI)/隐性语义分析(latent semantic analysis, LSA) 在LSI中, 一个矩阵由文档和词语组成的.在该矩阵上应用SVD可以构建多个奇异值, 这些奇异值代表文档中的概念或主题, 可以

奇异值分解(SVD)原理详解及推导

声明:转自http://blog.csdn.net/zhongkejingwang/article/details/43053513 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD原理梳理一下. SVD不

paper 128:奇异值分解(SVD) --- 线性变换几何意义[转]

PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义.能在有限的篇幅把这个问题讲解的如此清晰,实属不易.原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD. 原文:We recommend a singular value decomposition 简介 SVD实际上是数学专业内容,但它现在已经渗入到不同的领