曲线拟合——(2)拉普拉斯/瑞利/对数正态 曲线

作者:桂。

时间:2017-03-15  21:12:18

链接:http://www.cnblogs.com/xingshansi/p/6556517.html

声明:欢迎被转载,不过记得注明出处哦~


本文为拟合系列中的一部分,主要介绍拉普拉斯曲线 、瑞利曲线、对数正态曲线的拟合,并给出理论推导。

一、理论分析

  A-拉普拉斯(Laplace)

对于拉普拉斯分布:

$f(x) = \frac{1}{{2b}}{e^{ - \frac{{\left| {x - \mu } \right|}}{b}}}$

假设数据点{$x_i$,$y_i$}($i = 1,2,3,...N$)符合Laplace分布曲线,对其进行拟合(曲线拟合不同于分布拟合,需要乘以幅度$A$),给出准则函数:

对准则函数$J_0$求解即可实现参数估计。

由于求导比较复杂(可以借助Mathmatica/Maple),因此这里换一个思路:如果$e^x$—>$y$,则$x$—>$lny$,重新定义准则函数:

拉普拉斯仍然是对称曲线,因此用统计均值代替$\mu$的均值估计:

此时将$|x_i-\mu|$看作新的变量$t_i$,准则函数$J_1$即转化为{$t_i$,$ln(y_i)$}的一次线性拟合。后续求参就方便了。

  B-瑞利(Rayleigh)

对于瑞利分布:

$f(x) = \frac{x}{{{\sigma ^2}}}{e^{ - \frac{{{x^2}}}{{2{\sigma ^2}}}}}$

给出准则函数:

只涉及一个参数$\sigma$,同样是利用对数转化,进而求取参数估计。

  C-对数正态(Log-normal)

对数正态就是正态分布的变形,即$lnx$—>$x$,求参过程完全一致,可以参考:正态曲线拟合

二、拟合优化

对于求取对数的估计准则,都会有误差在0处较大的问题。关于优化的小trick,在分析正态分布曲线拟合时,已经给出详细理论,此处不再展开。

时间: 2024-10-09 22:58:22

曲线拟合——(2)拉普拉斯/瑞利/对数正态 曲线的相关文章

【程序员眼中的统计学(7)】正态分布的运用:正态之美

正态分布的运用:正态之美 作者 白宁超 2015年10月15日18:30:07 摘要:程序员眼中的统计学系列是作者和团队共同学习笔记的整理.首先提到统计学,很多人认为是经济学或者数学的专利,与计算机并没有交集.诚然在传统学科中,其在以上学科发挥作用很大.然而随着科学技术的发展和机器智能的普及,统计学在机器智能中的作用越来越重要.本系列统计学的学习基于<深入浅出统计学>一书(偏向代码实现,需要读者有一定基础,可以参见后面PPT学习).正如(吴军)先生在<数学之美>一书中阐述的,基于统

【CS229笔记一】监督学习,线性回归,LMS算法,正态方程,概率解释和局部加权线性回归

监督学习 对于一个房价预测系统,给出房间的面积和价格,以面积和价格作坐标轴,绘出各个点. 定义符号: \(x_{(i)}\)表示一个输入特征\(x\). \(y_{(i)}\)表示一个输出目标\(y\). \((x_{(i)},y_{(i)})\)表示一个训练样本. \(\left\{(x_{(i)},y_{(i)});i=1,\dots,m\right\}\)代表m个样本,也称为训练集. 上标\((i)\)代表样本在训练集中的索引. \(\mathcal{X}\)代表输入值的空间,\(\mat

在opencv3中实现机器学习之:利用正态贝叶斯分类

opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "opencv2/opencv.hpp" using namespace cv; using namespace cv::ml; int main(int, char**) { int width = 512, height = 512; Mat image = Mat::zeros(height, wi

OpenCV Machine Learning 之正态贝叶斯分类器源代码分析(Normal Bayes Classifier)

1.  CvNormalBayesClassifier的 类 定 义 在ml.hpp中有以下类定义: [cpp] view plaincopyprint? class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel { public: CV_WRAP CvNormalBayesClassifier(); virtual ~CvNormalBayesClassifier(); CvNormalBayesClassifier( co

坚持一下,正态的哲学就在一个百分点——技术需要不断积累

现状 IT日新月异,完全让人慌张和措手不及,不久前刚出来MVC,很快就连升几个版本:其他的,Swift,智能穿戴,大数据等等,让我这样笨拙的人情何以堪啊!!! 是的,我爱技术,但同时我又比较笨和比较浮躁.(不对称关系组合在一起,真揪心) 说比较笨,是因为我CPU处理速度不是那么地快,随着年龄的增长,确实力不从心: 说比较浮躁,是因为我什么都想学,什么都想要,虽然我没有说直接要钱,但是我想要通过牛逼的技术,来赚更多的钱. 实际上,当我重新选择来写博文这条路,我有个比较小型而且明确的目标,人生重新有

OpenCV Machine Learning 之 正态贝叶斯分类器 (Normal Bayes Classifier)

OpenCV Machine Learning 之 正态贝叶斯分类器 (Normal Bayes Classifier)

z检验用于检验正态样本均值是否等于某个假设值

    z检验用于检验正态样本均值是否等于某个假设值,不过需要事先知道总体方差,得到的统计量服从正态分布,有的教材上又叫u检验       t检验与z检验相似,t检验不需要知道总体方差,它用样本方差替代总体方差,得到的统计量服从t分布.实践应用中,t检验比z检验常用,因为不容易知道总体的方差.t检验来源于戈斯特的笔名student.     f检验主要用于方差分析,方差分析中,组间均方比上组内均方服从F分布,它是为了纪念费雪(此人对统计学贡献巨大)     卡方检验主要为了检验某个样本是否服从某

[定理证明]正态随机过程又是马尔科夫过程的充要条件

必要性的证明 充分性的证明 参考 参考1:<概率论与数理统计教材>(茆诗松,第二版) 参考2:[公式推导]用最简洁的方法证明多元正态分布的条件分布 参考3:<线性统计模型-线性回归与方差分析>(王松桂) 参考3:百度文库--<随机过程-正态马尔科夫过程>. 后续更新: 在定理1的基础上证明的定理2: 定理2就很有实用价值,由于平稳序列具有遍历性,所以就可以用样本自协方差函数来代替总体协方差函数,从而来根据函数是否为指数函数来判别序列是否具有马尔科夫性. --------

估计量|估计值|置信度|置信水平|非正态的小样本|t分布|大样本抽样分布|总体方差|

5 估计量和估计值是什么? 估计量不是估计出来的量,是用于估计的量. 估计量:用于估计总体参数的随机变量,一般为样本统计量.如样本均值.样本比例.样本方差等.例如:样本均值就是总体均值的一个估计量. 估计值就是估计出来的数值. 可以在点估计上使用样本方差估计总体方差吗? 可以,是无偏的. 置信度与置信水平的关系? 置信度是0.05,置信水平是0.95 来自非正态的小样本如何处理? 按照样本原生分布处理 两总体均值之差两种方差情况下的自由度? 使用t分布的动机是什么? 抽样分布正态,但是总体方差未