【转载】 Faster-RCNN+ZF用自己的数据集训练模型(Matlab版本)

说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同。下面是训练前的一些修改。

(做数据集的过程可以看http://blog.csdn.net/sinat_30071459/article/details/50723212

Faster-RCNN源码下载地址:

Matlab版本:https://github.com/ShaoqingRen/faster_rcnn

Python版本:https://github.com/rbgirshick/py-faster-rcnn

本文用到的是Matlab版本,在Windows下运行。

python版本的训练过程:http://blog.csdn.net/sinat_30071459/article/details/51332084

资源下载:https://github.com/ShaoqingRen/faster_rcnn,网页最后有所有的资源。

准备工作:

(1)

安装vs2013;

安装Matlab;

安装CUDA;

上面的安装顺序最好不要乱,否则可能出现Matlab找不到vs的情况,在Matlab命令行窗口输入:mbuild -setup,如果出现:

说明Matlab可以找到vs2013。CUDA应在安装vs2013后再安装。

(2)

如果你的cuda是6.5,那么,运行一下:

[plain] view plain copy

  1. fetch_data/fetch_caffe_mex_windows_vs2013_cuda65.m

(运行代码下载失败的话,用百度云下载:https://pan.baidu.com/s/1i3m0i0H  ,解压到faster_rcnn-master下)

得到mex文件。如果不是cuda6.5(如我的是cuda7.5),则需要自己编译mex文件,编译过程参考这里:Caffe for Faster R-CNN,按步骤做就行了。

也可以下载我编译得到的文件(注意cuda版本)。

下载地址:Faster-RCNN(Matlab) external文件夹

建议还是自己编译,因为版本问题可能会出错。在训练前,可以先下载作者训练好的模型,测试一下,如果可以的话,就不用自己编译了。

测试过程:

(1)运行faster_rcnn-master\faster_rcnn_build.m

(2)运行faster_rcnn-master\startup.m

(3)运行faster_rcnn-master\fetch_data\fetch_faster_rcnn_final_model.m  下载训练好的模型

(下载失败的话,可以用百度云下载:https://pan.baidu.com/s/1hsFKmeK ,解压到faster_rcnn-master下)

(4)修改faster_rcnn-master\experiments\script_faster_rcnn_demo.m的model_dir为你下载的模型,然后运行。

最终得到:

在训练前请确保你的路径faster_rcnn-master\external\caffe\matlab\caffe_faster_rcnn下有以下文件:

(我的OpenCV版本是2.4.9,cuda版本是7.5,因版本不同上述文件和你的编译结果可能会有差异。+caffe文件夹是从caffe-master或caffe-faster-R-CNN里拷贝过来的。)

如果你没有按上面说的测试过,请先运行:

(1)faster_rcnn-master\faster_rcnn_build.m

(2)faster_rcnn-master\startup.m

然后再进行下面的修改。

1 、VOCdevkit2007\VOCcode\VOCinit.m的修改

(1)路径的修改

说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同。下面是训练前的一些修改。

(做数据集的过程可以看http://blog.csdn.net/sinat_30071459/article/details/50723212

Faster-RCNN源码下载地址:

Matlab版本:https://github.com/ShaoqingRen/faster_rcnn

Python版本:https://github.com/rbgirshick/py-faster-rcnn

本文用到的是Matlab版本,在Windows下运行。

python版本的训练过程:http://blog.csdn.net/sinat_30071459/article/details/51332084

资源下载:https://github.com/ShaoqingRen/faster_rcnn,网页最后有所有的资源。

准备工作:

(1)

安装vs2013;

安装Matlab;

安装CUDA;

上面的安装顺序最好不要乱,否则可能出现Matlab找不到vs的情况,在Matlab命令行窗口输入:mbuild -setup,如果出现:

说明Matlab可以找到vs2013。CUDA应在安装vs2013后再安装。

(2)

如果你的cuda是6.5,那么,运行一下:

[plain] view plain copy

  1. fetch_data/fetch_caffe_mex_windows_vs2013_cuda65.m

(运行代码下载失败的话,用百度云下载:https://pan.baidu.com/s/1i3m0i0H  ,解压到faster_rcnn-master下)

得到mex文件。如果不是cuda6.5(如我的是cuda7.5),则需要自己编译mex文件,编译过程参考这里:Caffe for Faster R-CNN,按步骤做就行了。

也可以下载我编译得到的文件(注意cuda版本)。

下载地址:Faster-RCNN(Matlab) external文件夹

建议还是自己编译,因为版本问题可能会出错。在训练前,可以先下载作者训练好的模型,测试一下,如果可以的话,就不用自己编译了。

测试过程:

(1)运行faster_rcnn-master\faster_rcnn_build.m

(2)运行faster_rcnn-master\startup.m

(3)运行faster_rcnn-master\fetch_data\fetch_faster_rcnn_final_model.m  下载训练好的模型

(下载失败的话,可以用百度云下载:https://pan.baidu.com/s/1hsFKmeK ,解压到faster_rcnn-master下)

(4)修改faster_rcnn-master\experiments\script_faster_rcnn_demo.m的model_dir为你下载的模型,然后运行。

最终得到:

在训练前请确保你的路径faster_rcnn-master\external\caffe\matlab\caffe_faster_rcnn下有以下文件:

(我的OpenCV版本是2.4.9,cuda版本是7.5,因版本不同上述文件和你的编译结果可能会有差异。+caffe文件夹是从caffe-master或caffe-faster-R-CNN里拷贝过来的。)

如果你没有按上面说的测试过,请先运行:

(1)faster_rcnn-master\faster_rcnn_build.m

(2)faster_rcnn-master\startup.m

然后再进行下面的修改。

1 、VOCdevkit2007\VOCcode\VOCinit.m的修改

(1)路径的修改

VOCopts.annopath=[VOCopts.datadir VOCopts.dataset ‘/Annotations/%s.xml‘];
VOCopts.imgpath=[VOCopts.datadir VOCopts.dataset ‘/JPEGImages/%s.jpg‘];
VOCopts.imgsetpath=[VOCopts.datadir VOCopts.dataset ‘/ImageSets/Main/%s.txt‘];
VOCopts.clsimgsetpath=[VOCopts.datadir VOCopts.dataset ‘/ImageSets/Main/%s_%s.txt‘];
VOCopts.clsrespath=[VOCopts.resdir ‘Main/%s_cls_‘ VOCopts.testset ‘_%s.txt‘];
VOCopts.detrespath=[VOCopts.resdir ‘Main/%s_det_‘ VOCopts.testset ‘_%s.txt‘];

上面这些路径要正确,第一个是xml标签路径;第二个是图片的路径;第三个是放train.txt、val.txt、test.txt和trainval.txt的路径;第四、五、六个不需要;一般来说这些路径不用修改,你做的数据集格式和VOC2007相同就行。(图片格式默认是jpg,如果是png,修改上面第二行的代码即可。)

(2)训练集文件夹修改

VOCopts.dataset = ‘你的文件夹名‘;   

然后将VOC2007路径注释掉,上面“你的文件夹名”是你放Annotations、ImageSets、JPEGImages文件夹的文件夹名。

(3)标签的修改

VOCopts.classes={...
   ‘你的标签1‘
   ‘你的标签2‘
   ‘你的标签3‘
   ‘你的标签4‘};   

将其改为你的标签。

2 、VOCdevkit2007\results

results下需要新建一个文件夹,名字是1. (2)中“你的文件夹名”。“你的文件夹名”下新建一个Main文件夹。(因为可能会出现找不到文件夹的错误)

3 、VOCdevkit2007\local

local下需要新建一个文件夹,名字是1. (2)中“你的文件夹名”。(同上)

4 、function\fast_rcnn\fast_rcnn_train.m

ip.addParamValue(‘val_iters‘,       500,            @isscalar);
ip.addParamValue(‘val_interval‘,    2000,           @isscalar);  

可能在randperm(N,k)出现错误,根据数据集修改。(VOC2007中val有2510张图像,train有2501张,作者将val_iters设为500,val_interval设为2000,可以参考作者的设置修改,建议和作者一样val_iters约为val的1/5,val_interval不用修改)

5、function\rpn\proposal_train.m

这里的问题和fast_rcnn_train.m一样。

6.imdb\imdb_eval_voc.m

%do_eval = (str2num(year) <= 2007) | ~strcmp(test_set,‘test‘);
do_eval = 1;  

注释掉

    do_eval = (str2num(year) <= 2007) | ~strcmp(test_set,‘test‘);  

并令其为1,否则测试会出现精度全为0的情况

7. imdb\roidb_from_voc.m

ip.addParamValue(‘exclude_difficult_samples‘,       true,   @islogical);  

不包括难识别的样本,所以设置为true。(如果有就设置为false)。

8.网络模型的修改

(1) models\ fast_rcnn_prototxts\ZF\ train_val.prototxt

input: "bbox_targets"
input_dim: 1  # to be changed on-the-fly to match num ROIs
input_dim: 84 # 根据类别数改,该值为(类别数+1)*4  #################
input_dim: 1
input_dim: 1  
input: "bbox_loss_weights"
input_dim: 1  # to be changed on-the-fly to match num ROIs
input_dim: 84 # 根据类别数改,该值为(类别数+1)*4   ############
input_dim: 1
input_dim: 1

  

layer {
    bottom: "fc7"
    top: "cls_score"
    name: "cls_score"
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
    type: "InnerProduct"
    inner_product_param {
        num_output: 21 #根据类别数改该值为类别数+1   #########

  

layer {
    bottom: "fc7"
    top: "bbox_pred"
    name: "bbox_pred"
    type: "InnerProduct"
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
    inner_product_param {
        num_output: 84  #根据类别数改,该值为(类别数+1)*4  ##########

  

(2)models\ fast_rcnn_prototxts\ZF\ test.prototxt

layer {
    bottom: "fc7"
    top: "cls_score"
    name: "cls_score"
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
    type: "InnerProduct"
    inner_product_param {
        num_output: 21  #类别数+1  ##########

  

layer {
    bottom: "fc7"
    top: "bbox_pred"
    name: "bbox_pred"
    type: "InnerProduct"
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
    inner_product_param {
        num_output: 84  #4*(类别数+1)  ##########

  

(3) models\ fast_rcnn_prototxts\ZF_fc6\ train_val.prototxt

input: "bbox_targets"
input_dim: 1  # to be changed on-the-fly to match num ROIs
input_dim: 84 # 4*(类别数+1)  ###########
input_dim: 1
input_dim: 1

  

input: "bbox_loss_weights"
input_dim: 1  # to be changed on-the-fly to match num ROIs
input_dim: 84 # 4*(类别数+1)  ###########
input_dim: 1
input_dim: 1

  

layer {
    bottom: "fc7"
    top: "cls_score"
    name: "cls_score"
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
    type: "InnerProduct"
    inner_product_param {
        num_output: 21 #类别数+1   ############

  

layer {
    bottom: "fc7"
    top:"bbox_pred"
    name:"bbox_pred"
    type:"InnerProduct"
    param {
       lr_mult:1.0
    }
    param {
       lr_mult:2.0
    }
    inner_product_param{
       num_output: 84   #4*(类别数+1)   ###########

  

(4) models\ fast_rcnn_prototxts\ZF_fc6\ test.prototxt

layer {
    bottom: "fc7"
    top: "cls_score"
    name: "cls_score"
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
    type: "InnerProduct"
    inner_product_param {
        num_output: 21  类别数+1 #######

  

layer {
    bottom: "fc7"
    top: "bbox_pred"
    name: "bbox_pred"
    type: "InnerProduct"
    param {
        lr_mult: 1.0
    }
    param {
        lr_mult: 2.0
    }
    inner_product_param {
        num_output: 84  #4*(类别数+1) ##########

  

9.solver的修改

solver文件有3个,默认使用的solver是solver_30k40k.prototxt,如下stage 1 rpn,可以在faster_rcnn-master\experiments\+Model\ZF_for_Faster_RCNN_VOC2007.m中更换。

model.stage1_rpn.solver_def_file                = fullfile(pwd, ‘models‘, ‘rpn_prototxts‘, ‘ZF‘, ‘solver_30k40k.prototxt‘);%solver_60k80k.prototxt
model.stage1_rpn.test_net_def_file              = fullfile(pwd, ‘models‘, ‘rpn_prototxts‘, ‘ZF‘, ‘test.prototxt‘);
model.stage1_rpn.init_net_file                  = model.pre_trained_net_file;

  

!!!为防止与之前的模型搞混,训练前把output文件夹删除(或改个其他名),还要把imdb\cache中的文件删除(如果有的话)

 

更为简便的方法是直接用你的数据集的Annotations、ImageSets、JPEGImages文件夹替换VOC2007对应文件夹,那么上面只需进行1.(3)、4、5、7、8的修改。

 

10.开始训练

(1).下载预训练的ZF模型:fetch_data/fetch_model_ZF.m

(下载失败的话用百度云下载:https://pan.baidu.com/s/1o6zipPS ,解压到faster_rcnn-master下,预训练模型参数用于初始化)

(2).运行:

experiments/script_faster_rcnn_VOC2007_ZF.m

  

经过一会的准备工作,就进入迭代了:

11.训练完后

训练完后,不要急着马上测试,先打开output/faster_rcnn_final/faster_rcnn_VOC2007_ZF文件夹,打开detection_test.prototxt,作如下修改:

将relu5(包括relu5)前的层删除,并将roi_pool5的bottom改为data和rois。并且前面input: "data"下的input_dim:分别改为1,256,50,50(如果是VGG就是1,512,50,50,其他修改基本一样),具体如下

input: "data"
input_dim: 1
input_dim: 256
input_dim: 50
input_dim: 50

  

# ------------------------ layer 1 -----------------------------
layer {
    bottom: "data"
    bottom: "rois"
    top: "pool5"
    name: "roi_pool5"
    type: "ROIPooling"
    roi_pooling_param {
        pooled_w: 6
        pooled_h: 6
        spatial_scale: 0.0625  # (1/16)
    }
}

  

12.测试

训练完成后,打开\experiments\script_faster_rcnn_demo.m,将模型路径改成训练得到的模型路径:

model_dir   = fullfile(pwd, ‘output‘, ‘faster_rcnn_final‘, ‘faster_rcnn_VOC2007_ZF‘)  

将测试图片改成你的图片:

im_names = {‘001.jpg‘, ‘002.jpg‘, ‘003.jpg‘};

 

注意:

如果你的数据集类别比voc2007数据集多,把script_faster_rcnn_demo.m中的showboxes(im, boxes_cell, classes, ‘voc‘)作如下修改:

改为:

showboxes(im, boxes_cell, classes);

或者:

showboxes(im, boxes_cell, classes, ‘default‘);   

即去掉‘voc’或将其改为‘default’。

如果测试发现出现的框很多,且这些框没有目标,可以将阈值设高一些(默认是0.6):

thres = 0.9;

 

结果如下:

时间: 2024-10-16 20:01:55

【转载】 Faster-RCNN+ZF用自己的数据集训练模型(Matlab版本)的相关文章

Faster-RCNN+ZF用自己的数据集训练模型(Python版本)

说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同.下面是训练前的一些修改. (做数据集的过程可以看这里) Faster-RCNN源码下载地址: Matlab版本:https://github.com/ShaoqingRen/faster_rcnn Python版本:https://github.com/rbgirshick/py-faster-rcnn 本文用到的是Python版本,在Linux下运行. 准备工作: 1.配置caffe 这个不多说,网上教程很多. 2.其

使用faster rcnn 跑vot2015的数据集

本周老师给的任务: 一是将VOT15数据集(世华已传到服务器上)上每个序列的第1,11,21,31,41帧分别运行Faster R-CNN检测器并保存在图片上显示的检测结果: 二是将这5帧的ground truth bounding box作为proposal得到其对应的检测器分类结果(比如网络要检测20类物体,那包括背景就是得到21类对应的检测分数值),并将每个序列的检测结果分别存成一个文本文档. 注意,使用代码的时候,可能会有路径错误,还可能是,我贴上的代码,博客园的网站给在某些语句后加了

【Faster RCNN】建立数据集工厂类,并注册数据集类

在Faster RCNN中,首先使用基类imdbs创建一个工厂类.然后建立自己的具体数据集的类. 然后可以将类当做为函数,使用lambda方法进行调用实例化. 在这里,我们讲解一下lambda方法: var = (lamdba para1,para2 = func(para1,para2)) 其中,var变量存储的不是func的返回.而是func本身,如果我们输出var: print(var) #<function <lambda> at 0x000001B46BF97C80> 而

Faster R-CNN论文详解

原文链接:http://lib.csdn.net/article/deeplearning/46182 paper链接:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks &创新点 设计Region Proposal Networks[RPN],利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search.EdgeBoxes等方法,速度上提升明显:

Faster RCNN学习记录

<Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks>Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun                                           ——学习资料记录(Simon John) 文章拟解决问题(Towards Real-Time) SPP net和Fast R-CNN提取proposal(

(转)Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(更快的RCNN:通过区域提议网络实现实时)

原文出处 感谢作者~ Faster R-CNN: Towards Real-Time Object Detection with Region ProposalNetworks Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun 摘要 目前最先进的目标检测网络需要先用区域建议算法推测目标位置,像SPPnet[7]和Fast R-CNN[5]这些网络已经减少了检测网络的运行时间,这时计算区域建议就成了瓶颈问题.本文中,我们介绍一种区域建议网络(Reg

faster r-cnn 在CPU配置下训练自己的数据

因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net/wjx2012yt/article/details/52197698#quote 2.在CPU下训练数据集,需要对py-faster-rcnn内的roi_pooling_layer和smooth_L1_loss_layer改为CPU版本, 并重新编译.这位博主对其进行了修改,可直接进行替换:htt

【论文笔记】Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

写在前面: 我看的paper大多为Computer Vision.Deep Learning相关的paper,现在基本也处于入门阶段,一些理解可能不太正确.说到底,小女子才疏学浅,如果有错误及理解不透彻的地方,欢迎各位大神批评指正! E-mail:[email protected]. ------------------------------------------------ <Faster R-CNN: Towards Real-Time Object Detection with Reg

Faster RCNN算法代码解析

一. Faster-RCNN代码解释 先看看代码结构: Data: This directory holds (after you download them): Caffe models pre-trained on ImageNet Faster R-CNN models Symlinks to datasets demo 5张图片 scripts 下载模型的脚本 Experiments: logs scripts/faster_rcnn_alt_opt.sh cfgs/faster_rcn