组合计数 && Stirling数

参考:

http://blog.csdn.net/qwb492859377/article/details/50654627

http://blog.csdn.net/acdreamers/article/details/8521134

http://blog.csdn.net/sr_19930829/article/details/40888349

球,盒子都可以分成是否不能区分,和能区分,还能分成是否能有空箱子,所以一共是8种情况,我们现在来一一讨论。

1.球同,盒不同,无空箱

C(n-1,m-1), n>=m
0, n<m

使用插板法:n个球中间有n-1个间隙,现在要分成m个盒子,而且不能有空箱子,所以只要在n-1个间隙选出m-1个间隙即可

2.球同,盒不同,允许空箱

C(n+m-1,m-1)

我们在第1类情况下继续讨论,我们可以先假设m个盒子里都放好了1个球,所以说白了就是,现在有m+n个相同的球,要放入m个不同的箱子,没有空箱。也就是第1种情况

3.球不同,盒相同,无空箱

第二类斯特林数dp[n][m]
dp[n][m]=m*dp[n-1][m]+dp[n-1][m-1],1<=m<n
dp[k][k]=1,k>=0
dp[k][0]=0,k>=1
0,n<m

这种情况就是第二类斯特林数,我们来理解一下这个转移方程。

对于第n个球,如果前面的n-1个球已经放在了m个箱子里,那么现在第n个球放在哪个箱子都是可以的,所以m*dp[n-1][m];

如果前n-1个球已经放在了m-1个箱子里,那么现在第n个球必须要新开一个箱子来存放,所以dp[n-1][m-1]

其他的都没法转移过来

4.球不同,盒相同,允许空箱

sigma dp[n][i],0<=i<=m,dp[n][m]为情况3的第二类斯特林数

这种情况就是在第3种情况的前提下,去枚举使用的箱子的个数

5.球不同,盒不同,无空箱

dp[n][m]*fact[m],dp[n][m]为情况3的第二类斯特林数,fact[m]为m的阶乘

因为球是不同的,所以dp[n][m]得到的盒子相同的情况,只要再给盒子定义顺序,就等于现在的答案了

6.球不同,盒不同,允许空箱

power(m,n) 表示m的n次方

每个球都有m种选择,所以就等于m^n

7.球同,盒同,允许空箱

dp[n][m]=dp[n][m-1]+dp[n-m][m], n>=m
dp[n][m]=dp[n][m-1], n<m
边界dp[k][1]=1,dp[1][k]=1,dp[0][k]=1

现在有n个球,和m个箱子,我可以选择在所有箱子里面都放上1个球,也可以不选择这个操作。

如果选择了这个操作,那么就从dp[n-m][m]转移过来

如果没有选择这个操作,那么就从dp[n][m-1]转移过来

8.球同,盒同,无空箱

dp[n-m][m],dp同第7种情况,n>=m
0, n<m

因为要求无空箱,我们先在每个箱子里面放1个球,然后还剩下n-m个球了,再根据情况7答案就出来了

第一类Stirling数 s(p,k)

    

s(p,k)的一个的组合学解释是:将p个物体排成k个非空循环排列的方法数。

s(p,k)的递推公式: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1

边界条件:s(p,0)=0 ,p>=1  s(p,p)=1  ,p>=0

 

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空循环排列,这样前p-1种物品构成k-1个非空循环排列,方法数为s(p-1,k-1);

也可以前p-1种物品构成k个非空循环排列,而第p个物品插入第i个物品的左边,这有(p-1)*s(p-1,k)种方法。

 

第二类Stirling数 S(p,k)

   

S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。

k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。

   

S(p,k)的递推公式是:S(p,k)=k*S(p-1,k)+S(p-1,k-1) ,1<= k<=p-1

边界条件:S(p,p)=1 ,p>=0    S(p,0)=0 ,p>=1

  

递推关系的说明:

考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);

可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。

  

第一类斯特林数和第二类斯特林数有相同的初始条件,但递推关系不同。

//第二类Stirling数
long long s[maxn+10][maxn+10];//存放要求的Stirling数
const long long mod=1e9+7;
void get_s2()
{
    memset(s,0,sizeof(s));
    s[1][1]=1;
    for(int i=2;i<=maxn;i++){
        for(int j=1;j<=i;j++){
            s[i][j]=s[i-1][j-1]+j*s[i-1][j];
            //s[i][j]=(s[i-1][j-1]+j*s[i-1][j]%mod)%mod; //如果需要取模
        }
    }
}
//第一类stirling数
void get_s1()
{
    memset(s,0,sizeof(s));
    s[1][1]=1;
    for(int i=2;i<=maxn;i++){
        for(int j=1;j<=i;j++){
            s[i][j]=s[i-1][j-1]+(i-1)*s[i-1][j];
            //s[i][j]=(s[i-1][j-1]+(i-1)*s[i-1][j]%mod)%mod;
        }
    }
}  
时间: 2024-10-26 21:00:21

组合计数 && Stirling数的相关文章

HDU4372-Count the Buildings(第一类Stirling数+组合计数)

Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 528    Accepted Submission(s): 171 Problem Description There are N buildings standing in a straight line in the City, numbere

贝尔数(来自维基百科)&amp; Stirling数

贝尔数 贝尔数以埃里克·坦普尔·贝尔(Eric Temple Bell)为名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列): Bell Number Bn是基数为n的集合的划分方法的数目.集合S的一个划分是定义为S的两两不相交的非空子集的族,它们的并是S.例如B3 = 5因为3个元素的集合{a, b, c}有5种不同的划分方法: {{a}, {b}, {c}} {{a}, {b, c}} {{b}, {a, c}} {{c}, {a, b}} {{a, b, c}}; B0

HDU4675-GCD of Sequence(数论+组合计数)

GCD of Sequence Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submission(s): 949    Accepted Submission(s): 284 Problem Description Alice is playing a game with Bob. Alice shows N integers a1, a2, -, aN, an

[组合数学] 第一类,第二类Stirling数,Bell数

一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在拿些盒子并不重要,唯一重要的是各个盒子里装的是什么,而不管哪个盒子装了什么. 递推公式有:S(p,p)=1 (p>=0)         S(p,0)=0  (p>=1)         S(p,k)=k*S(p-1,k)+S(p-1,k-1)   (1<=k<=p-1) .考虑将前p个正整数,1,2,.....p的集合作为要被

hdu 4372 第一类stirling数的应用/。。。好题

1 /** 2 大意: 给定一系列楼房,都在一条水平线上,高度从1到n,从左侧看能看到f个, 从右侧看,能看到b个,问有多少种这样的序列.. 3 思路: 因为肯定能看到最高的,,那我们先假定最高的楼房位置确定,那么在其左边还有f-1个能看见,在其右边还有b-1个,能看见..所以可以这样将题目转化: 将除最高楼之外的n-1个楼,分成f-1+b-1 组,在最高楼左边f-1 组,在其右边b-1组,那么分成f-1+b-1 组 就是第一类Stirling数.s[n-1][f-1+b-1]..左边f-1 组

HDU 4832 组合计数dp

Chess Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 509    Accepted Submission(s): 198 Problem Description 小度和小良最近又迷上了下棋.棋盘一共有N行M列,我们可以把左上角的格子定为(1,1),右下角的格子定为(N,M).在他们的规则中,"王"在棋盘上的走法遵循十字

【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数

[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体推导过程参考:51nod1222 最小公倍数计数 过程运用到的技巧: 1.将所有i和j的已知因子提取出来压缩上届. 2.将带有μ(k)的k提到最前面,从而后面变成单纯的三元组形式. 最终形式: $$ans=\sum_{k=1}^{\sqrt n} \mu(k)  \sum_{d}    \sum_{i} \s

[Gym-101981J] Prime Game (组合计数)

题意:求for(int i=1;i<=n;i++) for(int j=i;j<=n;j++) sum += f[i][j]; f[i][j]表示在序列从 i 位乘到第 j 位所形成的新的数的 不同质因子的个数. 思路:说是话,拿到题还是一开始想着能不能进行递推,比如先将每一个数进行 质因分解 然后用set不断更新统计个数来求和.但这样无论怎样都无法优化 (n^2) ,所以换思路再想. 就忽然想到了以前有一道做过的原题,题意是:给定一个长度为n的序列,然后求出每一个子区间不同数的个数和.而这一

3.29省选模拟赛 除法与取模 dp+组合计数

LINK:除法与取模 鬼题.不过50分很好写.考虑不带除法的时候 其实是一个dp的组合计数. 考虑带除法的时候需要状压一下除法操作. 因为除法操作是不受x的大小影响的 所以要状压这个除法操作. 直接采用二进制状压是不明智的 2的个数最多为13个 2^13也同样到达了1e4的复杂度. 考虑 hash状压 即 2的个数有x个 那么我们就有状态w表示2还有x个. 这样做的原因是把一些相同的东西给合并起来 而并非分散开来.即有多个2直接记录有多少个即可. 可以发现 这样做不同的除数最多只有5个 状态量较