Function Run Fun
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 17843 | Accepted: 9112 |
Description
We all love recursion! Don‘t we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if
implemented directly, for moderate values of a, b and c (for example, a =
15, b = 15, c = 15), the program takes hours to run because of the
massive recursion.
Input
The
input for your program will be a series of integer triples, one per
line, until the end-of-file flag of -1 -1 -1. Using the above technique,
you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
Sample Output
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1 记忆化搜索。照着思路走。不过把已经搜索过的就不要重复计算了
#include<iostream> #include<cstdio> #include<algorithm> #include <string.h> #include <math.h> using namespace std; int f[21][21][21]; int dfs(int a,int b,int c){ if(a<=0||b<=0||c<=0) return 1; if(a>20||b>20||c>20) return dfs(20,20,20); if(f[a][b][c]!=-1) return f[a][b][c]; if(a<b&&b<c) f[a][b][c] = dfs(a,b,c-1)+dfs(a,b-1,c-1)- dfs(a,b-1,c); else f[a][b][c]= dfs(a-1,b,c)+dfs(a-1,b-1,c)+dfs(a-1,b,c-1) -dfs(a-1,b-1,c-1); return f[a][b][c]; } int main() { int a,b,c; while(scanf("%d%d%d",&a,&b,&c)!=EOF){ if(a==-1&&b==-1&&c==-1) break; memset(f,-1,sizeof(f)); int ans = dfs(a,b,c); printf("w(%d, %d, %d) = %d\n",a,b,c,ans); } return 0; }