[SCOI2005]互不侵犯King

1087: [SCOI2005]互不侵犯King

Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4255  Solved: 2458 [Submit][Status][Discuss]

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上 左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

暴力枚举铁定TLE,考虑状压

设$dp[i][j][k]$表示前$i$行共取了$j$个且第$i$行取的情况为$k$的合法方案数

然后预处理出每种取法的棋子数,以及两两之间是否可行,转移即可

#include <iostream>
using namespace std;
int n, k, Max;
int cnt[512] = {0};
bool s1[512], s2[512][512];
void init(){
    for(int i = 0; i <= Max; i++){
        if(i & (i >> 1)){
            s1[i] = false;
            continue;
        }
        s1[i] = true;
        for(int j = 0; j < 9; j++)
            if(i & (1 << j)) cnt[i]++;
    }
    for(int i = 0; i <= Max; i++)
        for(int j = i; j <= Max; j++)
            if((i & (j >> 1)) || (i & j) || ((i >> 1) & j)) s2[i][j] = s2[j][i] = false;
            else s2[i][j] = s2[j][i] = true;
}
long long dp[10][100][512] = {0};
int main(){
    cin >> n >> k;
    Max = (1 << n) - 1;
    init();
    for(int i = 0; i <= Max; i++)
        if(s1[i] && cnt[1] <= k) dp[1][cnt[i]][i] = 1;
    for(int i = 1; i < n; i++)
        for(int j = 0; j <= Max; j++) if(s1[j])
            for(int l = 0; l <= Max; l++) if(s1[l] && s2[j][l])
                 for(int m = cnt[j]; m + cnt[l] <= k; m++)
                     dp[i + 1][m + cnt[l]][l] += dp[i][m][j];
    long long ans = 0;
    for(int i = 0; i <= Max; i++)
        if(s1[i]) ans += dp[n][k][i];
    cout << ans << endl;
    return 0;
}
时间: 2024-10-10 14:10:20

[SCOI2005]互不侵犯King的相关文章

BZOJ 1087: [SCOI2005]互不侵犯King( 状压dp )

简单的状压dp... dp( x , h , s ) 表示当前第 x 行 , 用了 h 个 king , 当前行的状态为 s . 考虑转移 : dp( x , h , s ) = ∑ dp( x - 1 , h - cnt_1( s ) , s' ) ( s and s' 两行不冲突 , cnt_1( s ) 表示 s 状态用了多少个 king ) 我有各种预处理所以 code 的方程和这有点不一样 ------------------------------------------------

BZOJ1087:[SCOI2005]互不侵犯King(状压DP)

[SCOI2005]互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N) Output 方案数. Sample Input 3 2 Sample Output 16 分析: 经典的状压DP题目,可我竟然调了很长时间都没对,后来发现是DP枚举范围错

SCOI2005互不侵犯King

1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1499  Solved: 872[Submit][Status] Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N

[Bzoj1083][SCOI2005]互不侵犯king(状压dp)

1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4595  Solved: 2664[Submit][Status][Discuss] Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K &

[BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N) Output 方案数. Sample Input 3 2 Sample Output 16 HINT Source Solution 状压$dp$就是把状态压缩成二进制数,利用二进制的位运算改进算法的一种方法

洛谷 P1896 [SCOI2005]互不侵犯King

题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N) 输出格式: 所得的方案数 输入输出样例 输入样例#1: 3 2 输出样例#1: 16 #include<cstdio> #include<cstring> #include<ios

【BZOJ 1087】[SCOI2005]互不侵犯King

Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N) Output 方案数. Sample Input 3 2 Sample Output 16 同学很早之前打表过了,orz 这题正解状压DP,f[i][s][k]表示第i行上一行的状态为S,选了k个 预处理出所有

【BZOJ】1087: [SCOI2005]互不侵犯King

[算法]状态压缩型DP [题解]http://www.cnblogs.com/xtx1999/p/4620227.html (orz) #include<cstdio> #include<algorithm> using namespace std; const int maxn=10,e2=530; long long f[maxn][e2][maxn*maxn]; int n,mk,num[e2],king[e2],ok[e2][e2]; bool selfcheck(int

[BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... 然后其实作为状压DP是一道非常好的题啦>< 感觉直接无脑搞时间是下不来的 做了好几道预处理 使得最后DP的过程中没有任何一条转移是无用的 1 program bzoj1087; 2 var i,x,n,k,j,p,q,t1,t2:longint; 3 ans:int64; 4 a:array[-1