Linux LCD驱动(三)--图形显示

3.  BMP和JPEG图形显示程序
3.1 
在LCD上显示BMP或JPEG图片的主流程图
首先,在程序开始前。要在nfs/dev目录下创建LCD的设备结点,设备名fb0,设备类型为字符设备,主设备号为29,次设备号为0。命令如下:
mknod
fb0 c 29
0
在LCD上显示图象的主流程图如图3.1所示。程序一开始要调用open函数打开设备,然后调用ioctl获取设备相关信息,接下来就是读取图形文件数据,把图象的RGB值映射到显存中,这部分是图象显示的核心。对于JPEG格式的图片,要先经过JPEG解码才能得到RGB数据,本项目中直接才用现成的JPEG库进行解码。对于bmp格式的图片,则可以直接从文件里面提取其RGB数据。要从一个bmp文件里面把图片数据阵列提取出来,首先必须知道bmp文件的格式。下面来详细介绍bmp文件的格式。
 
图3.1

3.2 
bmp位图格式分析
位图文件可看成由四个部分组成:位图文件头、位图信息头、彩色表和定义位图的字节阵列。如图3.2所示。
 
图3.2
文件头中各个段的地址及其内容如图3.3。
  
图3.3
位图文件头数据结构包含BMP图象文件的类型,显示内容等信息。它的数据结构如下定义:
Typedef
struct
{  
int  bfType;//表明位图文件的类型,必须为BM
long
bfSize;//表明位图文件的大小,以字节为单位
int  bfReserved1;//属于保留字,必须为本0
int 
bfReserved2;//也是保留字,必须为本0
long bfOffBits;//位图阵列的起始位置,以字节为单位

BITMAPFILEHEADER;

(2)信息头中各个段的地址及其内容如图3.5所示。
 
图3.5
位图信息头的数据结构包含了有关BMP图象的宽,高,压缩方法等信息,它的C语言数据结构如图3.6所示。
Typedef
struct {
long  biSize; //指出本数据结构所需要的字节数
long 
biWidth;//以象素为单位,给出BMP图象的宽度
long 
biHeight;//以象素为单位,给出BMP图象的高度
int   
biPlanes;//输出设备的位平面数,必须置为1
int   
biBitCount;//给出每个象素的位数
long  biCompress;//给出位图的压缩类型
long 
biSizeImage;//给出图象字节数的多少
long  biXPelsPerMeter;//图像的水平分辨率
long 
biYPelsPerMeter;//图象的垂直分辨率
long 
biClrUsed;//调色板中图象实际使用的颜色素数
long  biClrImportant;//给出重要颜色的索引值
}
BITMAPINFOHEADER;

(3)对于象素小于或等于16位的图片,都有一个颜色表用来给图象数据阵列提供颜色索引,其中的每块数据都以B、G、R的顺序排列,还有一个是reserved保留位。而在图形数据区域存放的是各个象素点的索引值。它的C语言结构如图3.7所示。
 
图3.7 
颜色表数据结构
(4)对于24位和32位的图片,没有彩色表,他在图象数据区里直接存放图片的RGB数据,其中的每个象素点的数据都以B、G、R的顺序排列。每个象素点的数据结构如图3.8所示。
  
图3.8 
图象数据阵列的数据结构
(5)由于图象数据阵列中的数据是从图片的最后一行开始往上存放的,因此在显示图象时,是从图象的左下角开始逐行扫描图象,即从左到右,从下到上。
(6)对S3C2410或PXA255开发板上的LCD来说,他们每个象素点所占的位数为16位,这16位按B:G:R=5:6:5的方式分,其中B在最高位,R在最低位。而从bmp图象得到的R、G、B数据则每个数据占8位,合起来一共24位,因此需要对该R、G、B数据进行移位组合成一个16位的数据。移位方法如下:
b
>>= 3; g >>= 2; r >>= 3;
RGBValue = ( r<<11 | g
<< 5 | b);
基于以上分析,提取各种类型的bmp图象的流程如图3.9所示
  

图 3.9

3.3 
实现显示任意大小的图片
开发板上的LCD屏的大小是固定的,S3C2410上的LCD为:240*320,PXA255上的为:640*480。比屏幕小的图片在屏上显示当然没问题,但是如果图片比屏幕大呢?这就要求我们通过某种算法对图片进行缩放。
缩放的基本思想是将图片分成若干个方块,对每个方块中的R、G、B数据进行取平均,得到一个新的R、G、B值,这个值就作为该方块在LCD屏幕上的映射。




 

缩放的算法描述如下:
(1)、计算图片大小与LCD屏大小的比例,以及方块的大小。为了适应各种屏幕大小,这里并不直接给lcd_width和lcd_height赋值为240和320。而是调用标准的接口来获取有关屏幕的参数。具体如下:
   
// Get variable screen information
    if
(ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo))
{
        printf("Error
reading variable information.
");
       
exit(3);
    }
unsigned int
lcd_width=vinfo.xres;
 unsigned int
lcd_height=vinfo.yres;

计算比例:
widthScale=bmpi->width/lcd_width;
heightScale=bmpi->height/lcd_height;
本程序中方块的大小以如下的方式确定:
unsigned
int paneWidth= 
 unsigned int paneHeight=
;
符号 代表向上取整。
(2)、从图片的左上角开始,以(i* widthScale,j*
heightScale)位起始点,以宽paneWidth
高paneHeight为一个小方块,对该方块的R、G、B数值分别取平均,得到映射点的R、G、B值,把该点作为要在LCD上显示的第(i ,
j)点存储起来。
这部分的程序如下:
 //-------------取平均--------
 for(
i=0;i<now_height;i++)
 {
  for(j=0;j<now_width;j++)
  {   
   color_sum_r=0;
   color_sum_g=0;
   color_sum_b=0;
   for(m=i*heightScale;m<i*heightScale+paneHeight;m++)
   {
    for(n=j*widthScale;n<j*widthScale+paneWidth;n++)
    {
     color_sum_r+=pointvalue[m][n].r;
     color_sum_g+=pointvalue[m][n].g;
     color_sum_b+=pointvalue[m][n].b;
    }
   }
   RGBvalue_256->r=div_round(color_sum_r,paneHeight*paneWidth);
   RGBvalue_256->g=div_round(color_sum_g,paneHeight*paneWidth);
   RGBvalue_256->b=div_round(color_sum_b,paneHeight*paneWidth);
  }
 }
3.4 
图片数据提取及显示的总流程
通过以上的分析,整个图片数据提取及显示的总流程如图3.10
所示。 
 

3.10

转载地址http://www.linuxidc.com/Linux/2011-08/41673.htm

Linux LCD驱动(三)--图形显示,码迷,mamicode.com

时间: 2024-08-25 15:07:05

Linux LCD驱动(三)--图形显示的相关文章

Linux LCD驱动(四)--驱动的实现

目录(?)[-] 基本原理 写 framebuffer 驱动程序要做什么 LCD 模块 驱动程序 控制器 什么是 frame buffer 设备 Linux Frame Buffer 驱动程序层次结构 数据结构 接口 一个 LCD controller 驱动程序 分配系统内存作为显存 实现 fb_ops 结构 基本原理 通过 framebuffer ,应用程序用 mmap 把显存映射到应用程序虚拟地址空间,将要显示的数据写入这个内存空间就可以在屏幕上显示出来: 驱动程序分配系统内存作为显存:实现

4 linux lcd驱动框架分析

4 linux lcd驱动框架 Linux内核中lcd的驱动是基于帧缓冲framebuffer驱动框架设计的.帧缓冲framebuffer框架是在linux2.2.xx以后的版本中为显示设备提供的一种驱动程序接口,它将显示缓冲区framebuffer进行抽象,屏蔽掉硬件的底层差异,允许上层应用程序在图形模式下直接对显示缓冲区framebuffer进行读写和I/O控制操作.Framebuffer机制模仿显卡的功能,将显卡硬件抽象为一系列的数据结构,通过framebuffer的读写实现对显存的操作.

LInux LCD驱动分析

一.让LCD显示可爱的小企鹅还是先说说环境吧,处理器为S3C2410,linux的版本当然是2.6.20的.下面先说说怎样让LCD上显示出可爱的小企鹅.最直接的步骤如下(记住不要问为什么哈-_-,一步一步跟着走就行了):1.       添加s3c2410处理器的LCD控制寄存器的初始值,具体做法为在文件arch/arm/mach-s3c2410/mach-smdk2410.c中添加struct s3c2410fb_mach_info类型的寄存器描述讯息,如下所示:static struct s

浅谈linux的LCD驱动

一.硬件基础 1.硬件框图 2.LCD控制器 了解硬件最直接的办法就是看手册,在这里我只会简单介绍下LCD的硬件.具体的我会在下面结合程序讲解. a.REGBANK是LCD控制器的寄存器,含17个寄存器以及一块256*16的调色内存,用来设置各项参数. b.LCDCDMA是LCD控制器专用的DMA信道. c.TIMEGEN和LPC3600负责产生LCD屏所需要的控制时序. d.VIDPRCS需要与LCDCDMA中的数组合成特定的格式,然后从VD[23:0]发送给LCD屏幕. 3.时序理解 二.驱

Linux Framebuffer 驱动框架之一概念介绍及LCD硬件原理【转】

本文转载自:http://blog.csdn.net/liuxd3000/article/details/17464779 一.基本概念 帧缓冲(Framebuffer)是Linux系统为显示设备提供的一个接口,它将显示缓冲区抽象,屏蔽图像硬件的底层差异,允许上层应用程序在图形模式下直接对显示缓冲区进行读写操作.用户不必关心物理显示缓冲区的具体位置及存放方式,这些都是由帧缓冲设备驱动本身来完成.对于帧缓冲设备而言,只要在显示缓冲区与显示点对应的区域写入颜色值,对应的颜色会自动在屏幕上显示,下一小

Linux设备驱动核心理论(三)

10.中断与时钟 10.1 中断与定时器 所谓中断是指CPU在执行程序的过程中,出现了某些突发事件急待处理,CPU必须暂停执行当前程序,转去处理突发事件,处理完毕后CPU又返回原程序被中断的位置并继续执行. 根据中断的来源,中断可分为内部中断和外部中断,内部中断的中断来源来自CPU内部(软件中断.溢出.除法错误等,例如,操作系统从用户态切换到内核态需借助CPU内部的软件中断),外部中断的中断来源来自CPU外部,由外设提出请求. 根据中断是否可以屏蔽分为可屏蔽中断与不屏蔽中断(NMI),可屏蔽中断

linux设备驱动第三篇:写一个简单的字符设备驱动

在linux设备驱动第一篇:设备驱动程序简介中简单介绍了字符驱动,本篇简单介绍如何写一个简单的字符设备驱动.本篇借鉴LDD中的源码,实现一个与硬件设备无关的字符设备驱动,仅仅操作从内核中分配的一些内存. 下面就开始学习如何写一个简单的字符设备驱动.首先我们来分解一下字符设备驱动都有那些结构或者方法组成,也就是说实现一个可以使用的字符设备驱动我们必须做些什么工作. 1.主设备号和次设备号 对于字符设备的访问是通过文件系统中的设备名称进行的.他们通常位于/dev目录下.如下: [plain] vie

linux设备驱动归纳总结(三):5.阻塞型IO实现【转】

本文转载自:http://blog.chinaunix.net/uid-25014876-id-60025.html linux设备驱动归纳总结(三):5.阻塞型IO实现 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 一.休眠简介: 进程休眠,简单的说就是正在运行的进程让出CPU.休眠的进程会被内核搁置在在一边,只有当内核再次把休眠的进程唤醒,进程才会会重新在CPU运行

linux设备驱动归纳总结(三):6.poll和sellct【转】

本文转载自:http://blog.chinaunix.net/uid-25014876-id-61749.html linux设备驱动归纳总结(三):6.poll和sellct xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 接下来会讲系统调用select在驱动中的实现,如果对系统调用select不太懂的话,建议先看书补习一下. xxxxxxxxxxxxxxxxxxxx