回归1——Logistic回归

主要思想:根据现有数据对分类边界线建立回归公式,以此进行分类

优点:计算代价不高,易于理解和实现

缺点:容易欠拟合,分类精度可能不高

适用数据类型:数值型和标称型数据

回归的结果为一个数值型数据,利用Sigmoid函数(平缓的阶跃函数)将其归一化到[0,1]之间,之后设定阈值以进行分类。

simoid(z) = 1.0/(1+exp(-z))

回归线方程为:z=w0x0+w1x1+...+wnxn

利用输入数据xi和输出数据zi来估计出最佳的w值

使用梯度上升法寻找最佳w

梯度上升法,用来寻找某个函数的最大值。利用的数学原理是:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向搜寻。

w := w + alpha*grad(f(w))

其中w就是要参与迭代的参数,alpha表示寻找时前进的步伐,grad(f(w))是f(w)变化最快的方向

梯度下降法,用来寻找最小值

w := w - alpha*grad(f(w))

未完成待增补

时间: 2024-10-13 22:49:26

回归1——Logistic回归的相关文章

SPSS—回归—二元Logistic回归案例分析

数据分析真不是一门省油的灯,搞的人晕头转向,而且涉及到很多复杂的计算,还是书读少了,小学毕业的我,真是死了不少脑细胞, 学习二元Logistic回归有一段时间了,今天跟大家分享一下学习心得,希望多指教! 二元Logistic,从字面上其实就可以理解大概是什么意思,Logistic中文意思为"逻辑"但是这里,并不是逻辑的意思,而是通过logit变换来命名的,二元一般指"两种可能性"就好比逻辑中的"是"或者"否"一样, Logis

从Softmax回归到Logistic回归

Softmax回归是Logistic回归在多分类问题上的推广,是有监督的. 回归的假设函数(hypothesis function)为,我们将训练模型参数,使其能够最小化代价函数: 在Softmax回归中,我们解决的是多分类问题,类标y可以取k个不同的值.对于给定的测试输入x,我们想用假设函数针对每一个类别j估算出概率值.也就是说,我们想估计x的每一种分类结果的概率.因此,我们的假设函数将要输出一个k维的向量(向量元素的和为1)来表示这k个估计的概率值.具体地说,我们的假设函数形式如下: 其中,

逻辑回归(logistic回归)

前言            以下内容是个人学习之后的感悟,如果有错误之处,还请多多包涵~ 逻辑回归 一.为什么使用logistic回归   一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大. Why?  为什么回归一般不用在分类上?其实,很多初学者都会提出这个问题.然而,文字的解释往往不能说服我们,接下来 用图示的方式为大家讲解. 以最简单的分类为例,当y≥0.5时,输出"1":当y<0.5时,输出"0".下面左图,数据样本较好,线性

Logistic回归模型和Python实现

回归分析是研究变量之间定量关系的一种统计学方法,具有广泛的应用. Logistic回归模型 线性回归 先从线性回归模型开始,线性回归是最基本的回归模型,它使用线性函数描述两个变量之间的关系,将连续或离散的自变量映射到连续的实数域. 模型数学形式: 引入损失函数(loss function,也称为错误函数)描述模型拟合程度: 使J(w)最小,求解优化问题得到最佳参数. Logistic回归 logistic回归(Logistic regression 或 logit regression)有时也被

对线性回归,logistic回归和一般回归的认识

假设有一个房屋销售的数据如下:这个表类似于北京5环左右的房屋价钱,我们可以做出一个图,x轴是房屋的面积.y轴是房屋的售价,如下: 如果来了一个新的面积,假设在销售价钱的记录中没有的,我们怎么办呢? 我们可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回.如果用一条直线去拟合,可能是下面 的样子:绿色的点就是我们想要预测的点. 首先给出一些概念和常用的符号. 房屋销售记录表:训练集(training set)或者训练数据(training data)

Logistic回归Cost函数和J(θ)的推导----Andrew Ng【machine learning】公开课

最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法到代码跳跃的幅度有点大,作者本人也说了,这里略去了一个简单的数学推导. 那么其实这个过程在Andrew Ng的机器学习公开课里也有讲到.现在回忆起来,大二看Andrew的视频的时候心里是有这么一个疙瘩(Andrew也是跳过了一步推导) 那么这里就来讲一下作者略去了怎样的数学推导,以及,怎么推导. 在此之前,先

机器学习之线性回归---logistic回归---softmax回归

1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多维的. 讲义最初介绍了一个基本问题,然后引出了线性回归的解决方法,然后针对误差问题做了概率解释.之后介绍了logistic回归.最后上升到理论层次,提出了一般回归. 2 问题引入 这个例子来自http://www.cnblogs.com/LeftNot

机器学习(1):Logistic回归原理及其实现

Logistic回归是机器学习中非常经典的一个方法,主要用于解决二分类问题,它是多分类问题softmax的基础,而softmax在深度学习中的网络后端做为常用的分类器,接下来我们将从原理和实现来阐述该算法的思想. 1.原理 a.问题描述 考虑二分类问题,利用回归的思想,拟合特征向量到类别标签的回归,常用Logistic回归.假设已知训练样本集\(D\)的\(n\)个样本 \(\left ( x_{i},t_{i} \right )_{i=1}^{n}\) ,其中\(t_{i}\in \left

【转载】对线性回归,logistic回归和一般回归的认识

对线性回归,logistic回归和一般回归的认识 [转载时请注明来源]:http://www.cnblogs.com/jerrylead JerryLead 2011年2月27日 作为一个机器学习初学者,认识有限,表述也多有错误,望大家多多批评指正. 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识.前四节主要讲述了回归问题,回归属于有监督学习中的一种方法.该方法的核心思想是从连续型统计数据中得到数学模型,然后将该数学模型用于预测或者分类.该方法处理的数据可以是多