sicily 1146 采药 (动规)

打代码不走心会掉坑里的。。

下边是代码:

 1 //1146.采药
 2 //t表示总时间
 3 //m表示草药数
 4 //w表示采药时间
 5 //v表示草药价值
 6 #include <iostream>
 7 using namespace std;
 8
 9 #define MAX(a,b) a>b?a:b
10
11 int MaxValue(int w[], int v[], int m, int t) {
12     int max[m+1][t+1];
13     for (int i = 0; i <= t; i++) {
14         if (i>=w[1]) max[1][i] = v[1];  //我刚开始把这里的w[1]打成了w[i]。。下次打代码一定要走心。。
15         else max[1][i] = 0;
16     }
17     for (int i = 2; i <= m; i++) {
18         for (int j = 0; j <= t; j++) {
19             if (j<w[i]) max[i][j] = max[i-1][j];
20             else {
21                 max[i][j] = MAX(max[i-1][j], (max[i-1][j-w[i]]+v[i]));
22             }
23         }
24     }
25     return max[m][t];
26 }
27
28 int main() {
29     int t, m;
30     cin>>t>>m;
31     int w[m+1], v[m+1];
32     for (int i = 1; i <= m; i++) cin>>w[i]>>v[i];
33     cout<<MaxValue(w,v,m,t)<<endl;
34     return 0;
35 }
时间: 2024-10-12 11:39:39

sicily 1146 采药 (动规)的相关文章

sicily 1146 采药(01背包)

本来还觉得01背包是动态规划中比较基础的部分,没想到现在看了一下觉得好难... 这题就是01Knapsack问题,我参考了一下Hawstein的blog,先来举一些例子吧: 让我假设现在的背包的容量是C=10: 物品编号: 1 2 3 物品重量: 5 6 4 物品价值:20 10 12 用v[i]表示物品价值,w[i]表示物品重量,要使得放入背包的物品价值最大化,我们知道用贪心是不行的! ------------------------------------------------------

sicily 1091 Maximum Sum (动规)

1 //1091.Maximum Sum 2 //b(i,j) = max{b(i,j-1)+a[j], max(b(i-1,t)+a[j])} (t<j) 3 #include <iostream> 4 using namespace std; 5 6 int main() { 7 int t; 8 cin>>t; 9 while (t--) { 10 int n; 11 cin>>n; 12 int a[n+1]; 13 for (int i = 1; i &

POJ 2955 Brackets (动规)

Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2999   Accepted: 1536 Description We give the following inductive definition of a "regular brackets" sequence: the empty sequence is a regular brackets sequence, if s is a reg

ACM/ICPC 之 经典动规(POJ1088-滑雪)

POJ1088-滑雪 将每个滑雪点都看作起点,从最低点开始逐个由四周递推出到达此点的最长路径的长度,由该点记下. 理论上,也可以将每一点都看作终点,由最高点开始计数,有兴趣可以试试. 1 //经典DP-由高向低海拔滑雪-求最长路 2 //Memory:372K Time:32 Ms 3 #include<iostream> 4 #include<cstring> 5 #include<cstdio> 6 #include<algorithm> 7 using

!HDU 1176--DP--(矩阵动规)

题意:有一个数轴,从0到10,小明开始在5这个位置.现在天上开始掉馅饼,小明每次只能移动单位一的长度,求小明最多能接到多少馅饼. 分析:刚开始接触动态规划,还没有真正理解动规的思维,所以刚开始的dp做法不知道对不对但是TLE了.正确的方法是建立一个以时间为行位置为列的矩阵,最初map[i][j]代表的是第i时刻j位置掉的馅饼的数量,状态转移方程:map[i][j]=map[i][j]+max(map[i+1][j-1],map[i+1][j],map[i+1][j+1]).也就是从最底层开始往上

【字符串处理+动规】单词的划分

[字符串处理+动规]单词的划分 Time Limit: 1000MS Memory Limit: 2560KB 有一个很长的由小写字母组成字符串.为了便于对这个字符串进行分析,需要将它划分成若干个部分,每个部分称为一个单词.出于减少分析量的目的,我们希望划分出的单词数越少越好.你就是来完成这一划分工作的. 输入格式 第一行,一个字符串.(字符串的长度不超过100)     第二行一个整数n,表示单词的个数.(n<=100)     第3~n+2行,每行列出一个单词. 输出格式     一个整数,

[ACM] hdu 1231 最大连续子序列 (动规复习)

最大连续子序列 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 17687    Accepted Submission(s): 7828 Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i <= j

【线性动规】最大子段和

题目描述 给出一段序列,选出其中连续且非空的一段使得这段和最大. 输入输出格式 输入格式: 输入文件maxsum1.in的第一行是一个正整数N,表示了序列的长度. 第2行包含N个绝对值不大于10000的整数A[i],描述了这段序列. 输出格式: 输入文件maxsum1.out仅包括1个整数,为最大的子段和是多少.子段的最小长度为1. 输入输出样例 输入样例#1: 7 2 -4 3 -1 2 -4 3 输出样例#1: 4 说明 [样例说明]2 -4 3 -1 2 -4 3 [数据规模与约定] 对于

Sicily 1146:Lenny&#39;s Lucky Lotto(dp)

题意:给出N,M,问有多少个长度为N的整数序列,满足所有数都在[1,M]内,并且每一个数至少是前一个数的两倍.例如给出N=4, M=10, 则有4个长度为4的整数序列满足条件: [1, 2, 4, 8], [1, 2, 4, 9], [1, 2, 4, 10], [1, 2, 5, 10] 分析:可用动态规划解题,假设dp[i][j],代表满足以整数i为尾数,长度为j的序列的个数(其中每一个数至少是前一个数的两倍).那么对于整数i,dp[i][j] 等于所有dp[k][j-1]的和,其中k满足: