怎样学好哲学(lucas+费马小定理)

怎样学习哲学

时间限制: 1 Sec  内存限制: 128 MB
提交: 97  解决: 27
[提交][状态][讨论版]

题目描述

OI大师抖儿在夺得银牌之后,顺利保送pku。这一天,抖儿问长者:“虽然我已经保送了,但是我还要参加学考。马上就要考政治了,请问应该怎样学习哲学,通过政治考试?”
 长者回答:“你啊,Too Young Too Simple,Sometimes Naive!哲学这种东西,不是说想懂就能懂的,需要静心撕烤。你去后面的森林里好好想想。”

长者的后院有一片哲♂学森林。由于一些奥妙重重的原因,这片森林构成了一个n*m的矩形,其中每个点就代表了一棵树。此外,由于辣鸡出题人KJDH从中捣鬼,有些树被连根拔起(也就是消失了)。抖儿每天都要到树下撕烤,因此他想要在每一行选择一棵树。但是他非常讨厌走回头路,因此第i行选择的树必须比第i-1行的靠右。现在抖儿想知道,总共有多少种选择的方案。

输入

第一行三个整数n,m,p,分别表示森林的长、宽,以及消失的树的数目。

接下来p行每行两个整数,表示第ai行第bi列的树消失了。

输出

一行一个整数,表示方案数。由于答案可能很大,请对1000003取模。

样例输入

3 5 2
2 3
3 4

样例输出

5

提示

【样例说明】

方案一:选(1,1)(2,2)(3,3)

方案二:选(1,1)(2,2)(3,5)

方案三:选(1,1)(2,4)(3,5)

方案四:选(1,2)(2,4)(3,5)

方案五:选(1,3)(2,4)(3,5)

题解,可以将其看成三角形的一个类似的,走法问题,就是半三角形走法,然后就是发现方案数是C(n,m),这个是可以推出来,

然后就是dp,当前节点的方案数总,是它左上部分经过不合法点到达其的方案数之和,相减即为走到该点方案数。

这样可以证明,到该点的方案数是所有,因为任何经过左上的dp[i]方案中,是表示到达dp[i]的合法方案数,因此通过数学归纳法得证,

这个推断是正确的,为了简便,将n+1,m+1这棵树拔掉,然后这个点的方案数,就为结果了。

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<iostream>
 6 #define mod 1000003
 7 #define ll long long
 8 #define Q 2007
 9 using namespace std;
10
11 int n,m,q;
12 ll p[mod+7],inv[mod+7],dp[Q];
13 struct Node
14 {
15     int x,y;
16 }a[Q];
17
18 bool cmp(Node x,Node y)
19 {
20     return x.x<y.x;
21 }
22 ll ksm(ll a,ll b)
23 {
24     ll ans=1;
25     while (b)
26     {
27         if (b&1) ans=a*ans%mod;
28         b/=2;
29         a=a*a%mod;
30     }
31     return ans;
32 }
33 ll Lucas_C(int n,int m)
34 {
35     if (n<m) return 0;
36     if (m==0) return 1;
37     if (n==m) return 1;
38     if (n<mod) return p[n]*inv[m]%mod*inv[n-m]%mod;
39     else return Lucas_C(n%mod,m%mod)*Lucas_C(n/mod,m/mod)%mod;
40 }
41 int main()
42 {
43     p[1]=1;
44     for (int i=2;i<=mod;i++)
45         p[i]=(p[i-1]*i)%mod;
46     for (int i=1;i<=mod;i++)
47         inv[i]=ksm(p[i],mod-2);
48     scanf("%d%d%d",&n,&m,&q);
49
50     for (int i=1;i<=q;i++)
51         scanf("%d%d",&a[i].x,&a[i].y);
52     q++,a[q].x=n+1,a[q].y=m+1;
53     sort(a+1,a+q+1,cmp);
54     for (int i=1;i<=q;i++)
55     {
56         dp[i]=Lucas_C(a[i].y-1,a[i].x-1);
57         for (int j=1;j<i;j++)
58             if (a[i].x>a[j].x&&a[i].y>a[j].y)
59                 dp[i]=(dp[i]-dp[j]*Lucas_C(a[i].y-a[j].y-1,a[i].x-a[j].x-1)%mod+mod)%mod;
60     }
61     printf("%lld",dp[q]);
62 }
时间: 2024-12-25 05:03:25

怎样学好哲学(lucas+费马小定理)的相关文章

【Lucas定理/费马小定理/中国剩余定理/扩展欧几里得】[BZOJ 1951] 古代猪文

[Description] 求 [Solution] 容易得到, 所以,重点在怎么求 如果是p-1是个质数,我们可以用sqrt(n)的时间枚举所有d,用Lucas定理分别计算求和即可. 但是我们发现p-1=2*3*4679*35617,并不是一个质数,所以Lucas定理不能用了吗?并不,我们可以算出这个合式分别对2.3.4679.35617的模值,写出四个同余方程,再用孙子定理求解即可.注意特判g==p的情况,此时费马小定理不成立,ans=0. [Code] #include<cmath> #

[CodeVs1515]跳(lucas定理+费马小定理+乘法逆元)

嘿嘿嘿好久没写数学题了,偶尔看到一道写一写... 题目大意:一个(n+1)*(m+1)[0<=n, m<=10^12,n*m<=10^12]的矩阵,C(0,0)=1,C(x,y)=C(x-1,y)+C(x,y-1),求从0,0走到n,m路上最小权值(即为前面的C)和mod 10^9+7. 看到这个C(x,y)=C(x-1,y)+C(x,y-1),第一反应就是杨辉三角,所以这个矩阵其实就是一个由组合数组成的矩阵,第i行第j列的权值为C(i+j,j)[注意这个矩形起点是(0,0)]. 我们可

[BZOJ 1951][Sdoi2010]古代猪文(Lucas+CRT+费马小定理)

Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪

【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理

Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了.猪

[bzoj1951] [Sdoi2010]古代猪文 费马小定理+Lucas定理+CRT

Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了.因此也很少有其他动物知道这样一个王国. 猪王国虽然不大,但是土地肥沃,屋舍俨然.如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃

hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                         (全题文末) 知识点: 整数n有种和分解方法. 费马小定理:p是质数,若p不能整除a,则 a^(p-1) ≡1(mod p).可利用费马小定理降素数幂. 当m为素数,(m必须是素数才能用费马小定理) a=2时.(a=2只是题中条件,a可以为其他值) mod m =  *      //  k=

HDU 1098 Ignatius&#39;s puzzle 费马小定理+扩展欧几里德算法

题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为x可以任意取 那么不能总是满足 65|x 那么必须是 65 | (5*x^12 + 13 * x^4 + ak) 那么就是说 x^12 / 13 + x^4 / 5 + ak / 65 正好是一个整数 假设能找到满足的a , 那么将 ak / 65 分进x^12 / 13 + x^4 / 5中得到

hdu 4549 (矩阵快速幂+费马小定理)

题意:已知F0=a,F1=b,Fn=Fn-1*Fn-2,给你a,b,n求Fn%1000000007的值 思路:我们试着写几组数 F0=a F1=b F2=a*b F3=a*b2 F4=a2*b3 F5=a3*b5 我们发现a,b的系数其实是斐波那契数列,我们只需用矩阵快速幂求出相应系数就行,但是 这个系数随着增长会特别大,这时我们需要利用费马小定理进行降幂处理 费马小定理 ap-1≡1(mod p) 代码: #include <iostream> #include <cmath>

hdu1098费马小定理

Ignatius's puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 9783    Accepted Submission(s): 6839 Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no