机器学习中的数学——拉格朗日乘子法

拉格朗日乘子法:应用在求有约束条件的函数的极值问题上。

a. 对于没有约束的函数求极值,只要求导,令导函数等于零即可。

b. 对于约束条件是等式的函数。

目标函数:f(x),

约束条件:g(x)=0

求解f(x)在此约束条件下的极值。

定义拉格朗日函数 :

L(x,λ)=f(x)+ λg(x)

分别对参数求偏导数,置零。

时间: 2024-09-30 05:05:13

机器学习中的数学——拉格朗日乘子法的相关文章

【机器学习之数学】03 有约束的非线性优化问题——拉格朗日乘子法、KKT条件、投影法

目录 将有约束问题转化为无约束问题 拉格朗日法 KKT条件 拉格朗日法更新方程 凸优化问题下的拉格朗日法 罚函数法 对梯度算法进行修改,使其运用在有约束条件下 投影法 梯度下降法 to 投影梯度法 正交投影算子 References 相关博客 梯度下降法.最速下降法.牛顿法等迭代求解方法,都是在无约束的条件下使用的,而在有约束的问题中,直接使用这些梯度方法会有问题,如更新后的值不满足约束条件. 那么问题来了,如何处理有约束的优化问题?大致可以分为以下两种方式: 将有约束的问题转化为无约束的问题,

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA) 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义.学习方法等等.一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是

(转)机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义.学习方法等等.一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解L

关于拉格朗日乘子法与KKT条件

关于拉格朗日乘子法与KKT条件 关于拉格朗日乘子法与KKT条件 目录 拉格朗日乘子法的数学基础 共轭函数 拉格朗日函数 拉格朗日对偶函数 目标函数最优值的下界 拉格朗日对偶函数与共轭函数的联系 拉格朗日对偶问题 如何显式的表述拉格朗日对偶问题 由定义消去下确界 隐式求解约束 共轭函数法 弱对偶 强对偶 原始问题与对偶问题的关系 最优条件 互补松弛条件 KKT条件 一般问题的KKT条件 凸问题的KKT条件 KKT条件的用途 拉格朗日乘数法的形象化解读 等式约束的拉格朗日乘子法 含有不等约束的情况

机器学习中的数学-线性判别分析(LDA), 主成分分析(PCA)《4》

版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系[email protected] 前言: 第二篇的文章中谈到,和部门老大一宁出去outing的时候,他给了我相当多的机器学习的建议,里面涉及到很多的算法的意义.学习方法等等.一宁上次给我提到,如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解L

拉格朗日乘子法 那些年学过的高数

最近在做通信网络相关的仿真,今天拿到了一些别人仿真的代码来学习,其中看到了一个double Lambda[T_Node_Number][M][Low_iteration];的参数,注释写着拉格朗日乘子式.本来对于这个名词感觉很陌生,后来查了一些资料,才回忆起这似乎是大一高数曾经学过的知识,经查书,果不其然,高数下P113页 条件极值拉格朗日法讲的就是这个内容.以前被忽视的知识点,再次重现,我觉得要好好学习一下.一下是学习笔记: 如何理解 先看一个二维的例子:假设有函数:f(x,y),要求其极值(

机器学习中的数学(1)-回归(regression)、梯度下降(gradient descent)

机器学习中的数学(1)-回归(regression).梯度下降(gradient descent) 版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是stanford的machine learning公开课,在

机器学习中的数学(2)-线性回归,偏差、方差权衡

机器学习中的数学(2)-线性回归,偏差.方差权衡 版权声明: 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任.如果有问题,请联系作者 [email protected] 前言: 距离上次发文章,也快有半个月的时间了,这半个月的时间里又在学习机器学习的道路上摸索着前进,积累了一点心得,以后会慢慢的写写这些心得.写文章是促进自己对知识认识的一个好方法,看书的时候往往不是非

非负矩阵分解(3):拉格朗日乘子法求解

作者:桂. 时间:2017-04-07  07:11:54 链接:http://www.cnblogs.com/xingshansi/p/6679325.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 最近发这类文章,动不动就被管理员从首页摘除,如果你觉得这个文章还说得过去,麻烦帮忙点个赞吧,这样移除的概率小一些.... 本文为非负矩阵分解系列第三篇,在第二篇中介绍了不同准则下乘法算法的推导及代码实现,这里不免有一个疑问:明明是一个约束的优化问题,虽然乘法算法巧妙地将其变为一个无约束优化