本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
BinTree Insert( BinTree BST, ElementType X ){
if(!BST) { /* 若原树为空,生成并返回一个结点的二叉搜索树 */
BST = (BinTree)malloc(sizeof(struct TNode));
BST ->Data = X;
BST ->Left = BST ->Right = NULL;
}else { /* 开始寻找要插入元素的位置 */
if(X < BST ->Data ) {
BST ->Left = Insert(BST ->Left, X);
}else if(X > BST ->Data ) {
BST ->Right = Insert(BST ->Right, X);
}
/* X已经存在,不用操作 */
}
return BST;
}
BinTree Delete( BinTree BST, ElementType X ){
Position Tmp;
if(!BST) printf("Not Found\n");
else {
if( X < BST->Data)
BST ->Left = Delete(BST->Left, X); /* 左子树递归删除 */
else if(X > BST->Data )
BST ->Right = Delete(BST->Right , X); /* 右子树递归删除*/
else { /* 找到需要删除的结点 */
if(BST->Left && BST->Right) { /* 被删除的结点有左右子结点 */
Tmp=FindMin(BST->Right); /* 在右子树中找到最小结点填充删除结点 */
BST->Data = Tmp ->Data;
BST->Right=Delete(BST->Right,BST->Data);/* 递归删除要删除结点的右子树中最小元素 */
}else { /* 被删除结点有一个或没有子结点*/
Tmp = BST;
if(!BST->Left) BST = BST->Right; /*有右孩子或者没孩子*/
else if(!BST->Right) BST = BST->Left;/*有左孩子,一定要加else,不然BST可能是NULL,会段错误*/
free(Tmp); /*如无左右孩子直接删除*/
}
}
}
return BST;
}
Position Find( BinTree BST, ElementType X ){
if(!BST) return NULL;
if(BST->Data==X) return BST;
if(X>BST->Data) return Find(BST->Right,X);
if(X<BST->Data) return Find(BST->Left,X);
/* 以下几种写法均可,推荐第上面这一种
if(!BST) return NULL;
if(BST->Data==X) return BST;
if(X>BST->Data) Find(BST->Right,X);
if(X<BST->Data) Find(BST->Left,X);
if(BST){
if(BST->Data==X) return BST;
if(X>BST->Data) Find(BST->Right,X); //如果不写return,则返回过来的值并没有继续返回给最开始的函数
if(X<BST->Data) Find(BST->Left,X);
}
else return NULL;
if(BST){
if(BST->Data==X) return BST;
if(X>BST->Data) return Find(BST->Right,X);
if(X<BST->Data) return Find(BST->Left,X);
}
return NULL;
if(BST){
if(BST->Data==X) return BST;
if(X>BST->Data) return Find(BST->Right,X);
if(X<BST->Data) return Find(BST->Left,X);
}
else return NULL;
*/
}
/*如果return NULL前面不写else且Find前也不写else,则最后递归返回的也没return,最后只能是执行到了return NULL
返回了,而如果find 前加上了return则就把递归的结果利用起来了,最后加不加else也无所谓了,而如果直接最后else,
不加return find也是可以的,加上了else之后就不会被每一次返回时最后的return NULL给覆盖掉,所以也行。 */
Position FindMin( BinTree BST ){
if(BST){
while(BST->Left){
BST=BST->Left;
}
}
return BST;
}
Position FindMax( BinTree BST ){
if(BST){
while(BST->Right){
BST=BST->Right;
}
}
return BST;
}
题目链接:
https://pta.patest.cn/pta/test/15/exam/3/question/927
时间: 2024-10-11 18:07:36