原题地址:https://open.kattis.com/problems/aplusb
FFT代码参考kuangbin的博客:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html
A+B Problem
Given N integers in the range [−50000,50000], how many ways are there to pick three
integers ai, aj, ak, such that i, j, k are pairwise distinct and ai+aj=ak? Two ways
are different if their ordered triples (i,j,k)of indices are different.
Input
The first line of input consists of a single integer N
(1≤N≤200000). The next line consists of N space-separated integers a1,a2,…,aN
Output
Output an integer representing the number of ways.
Sample Input 1 |
Sample Output 1 |
4 1 2 3 4 |
4 |
Sample Input 2 |
Sample Output 2 |
6 1 1 3 3 4 6 |
10 |
Author(s): Tung Kam Chuen
Source: Hong Kong Regional Online Preliminary 2016
题意:给一个数列,从中选三个数 ai, aj, ak,使得ai+aj=ak,问共有多少组( i, j, k)满足条件。
其实就是FFT。
注意一下a数组的数据范围,a[i]可能为负数,所有a[i]+50000,把负数转化为正数处理;
如果数组里有0,先把0删掉,最后特殊处理。
把a数组转化成num数组,num[i]表示i出现的次数。
然后num数组和num数组卷积,得到新的num数组。
num数组意义:num[x]表示使ai+aj=x,(i,j)的取法有多少种。
#include <algorithm> #include <cstring> #include <string.h> #include <iostream> #include <list> #include <map> #include <set> #include <stack> #include <string> #include <utility> #include <vector> #include <cstdio> #include <cmath> #define LL long long #define N 200005 #define INF 0x3ffffff using namespace std; const double PI = acos(-1.0); struct Complex // 复数 { double r,i; Complex(double _r = 0,double _i = 0) { r = _r; i = _i; } Complex operator +(const Complex &b) { return Complex(r+b.r,i+b.i); } Complex operator -(const Complex &b) { return Complex(r-b.r,i-b.i); } Complex operator *(const Complex &b) { return Complex(r*b.r-i*b.i,r*b.i+i*b.r); } }; void change(Complex y[],int len) // 二进制平摊反转置换 O(logn) { int i,j,k; for(i = 1, j = len/2;i < len-1;i++) { if(i < j)swap(y[i],y[j]); k = len/2; while( j >= k) { j -= k; k /= 2; } if(j < k)j += k; } } void fft(Complex y[],int len,int on) //DFT和FFT { change(y,len); for(int h = 2;h <= len;h <<= 1) { Complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h)); for(int j = 0;j < len;j += h) { Complex w(1,0); for(int k = j;k < j+h/2;k++) { Complex u = y[k]; Complex t = w*y[k+h/2]; y[k] = u+t; y[k+h/2] = u-t; w = w*wn; } } } if(on == -1) for(int i = 0;i < len;i++) y[i].r /= len; } const int M =50000; // a数组所有元素+M,使a[i]>=0 const int MAXN = 800040; Complex x1[MAXN]; int a[MAXN/4]; //原数组 long long num[MAXN]; //利用FFT得到的数组 long long tt[MAXN]; //统计数组每个元素出现个数 int main() { int n=0; // n表示除了0之外数组元素个数 int tot; scanf("%d",&tot); memset(num,0,sizeof(num)); memset(tt,0,sizeof(tt)); int cnt0=0; //cnt0 统计0的个数 int aa; for(int i = 0;i < tot;i++) { scanf("%d",&aa); if(aa==0) {cnt0++;continue;} //先把0全删掉,最后特殊考虑0 else a[n]=aa; num[a[n]+M]++; tt[a[n]+M]++; n++; } sort(a,a+n); int len1 = a[n-1]+M+1; int len = 1; while( len < 2*len1 ) len <<= 1; for(int i = 0;i < len1;i++){ x1[i] = Complex(num[i],0); } for(int i = len1;i < len;i++){ x1[i] =Complex(0,0); } fft(x1,len,1); for(int i = 0;i < len;i++){ x1[i] = x1[i]*x1[i]; } fft(x1,len,-1); for(int i = 0;i < len;i++){ num[i] = (long long)(x1[i].r+0.5); } len = 2*(a[n-1]+M); for(int i = 0;i < n;i++) //删掉ai+ai的情况 num[a[i]+a[i]+2*M]--; /* for(int i = 0;i < len;i++){ if(num[i]) cout<<i-2*M<<‘ ‘<<num[i]<<endl; } */ long long ret= 0; int l=a[n-1]+M; for(int i = 0;i <=l; i++) //ai,aj,ak都不为0的情况 { if(tt[i]) ret+=(long long)(num[i+M]*tt[i]); } ret+=(long long)(num[2*M]*cnt0); // ai+aj=0的情况 if(cnt0!=0) { if(cnt0>=3) { //ai,aj,ak都为0的情况 long long tmp=1; tmp*=(long long)(cnt0); tmp*=(long long)(cnt0-1); tmp*=(long long)(cnt0-2); ret+=tmp; } for(int i = 0;i <=l; i++) { if(tt[i]>=2){ // x+0=x的情况 long long tmp=(long long)cnt0; tmp*=(long long)(tt[i]); tmp*=(long long)(tt[i]-1); ret+=tmp*2; } } } printf("%lld\n",ret); return 0; }